Source code distributed/deploy/spec.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import asyncio
import atexit
from contextlib import suppress
import copy
import logging
import math
import weakref
import warnings

import dask
from tornado import gen

from .adaptive import Adaptive
from .cluster import Cluster
from ..core import rpc, CommClosedError, Status
from ..utils import (
    LoopRunner,
    silence_logging,
    parse_bytes,
    parse_timedelta,
    import_term,
    TimeoutError,
)
from ..scheduler import Scheduler
from ..security import Security


logger = logging.getLogger(__name__)


class ProcessInterface:
    """
    An interface for Scheduler and Worker processes for use in SpecCluster

    This interface is responsible to submit a worker or scheduler process to a
    resource manager like Kubernetes, Yarn, or SLURM/PBS/SGE/...
    It should implement the methods below, like ``start`` and ``close``
    """

    @property
    def status(self):
        return self._status

    @status.setter
    def status(self, new_status):
        if isinstance(new_status, Status):
            self._status = new_status
        elif isinstance(new_status, str) or new_status is None:
            warnings.warn(
                f"Since distributed 2.19 `.status` is now an Enum, please assign `Status.{new_status}`",
                PendingDeprecationWarning,
                stacklevel=1,
            )
            corresponding_enum_variants = [s for s in Status if s.value == new_status]
            assert len(corresponding_enum_variants) == 1
            self._status = corresponding_enum_variants[0]
        else:
            raise TypeError(f"expected Status or str, got {new_status}")

    def __init__(self, scheduler=None, name=None):
        self.address = getattr(self, "address", None)
        self.external_address = None
        self.lock = asyncio.Lock()
        self.status = Status.created
        self._event_finished = asyncio.Event()

    def __await__(self):
        async def _():
            async with self.lock:
                if self.status == Status.created:
                    await self.start()
                    assert self.status == Status.running
            return self

        return _().__await__()

    async def start(self):
        """Submit the process to the resource manager

        For workers this doesn't have to wait until the process actually starts,
        but can return once the resource manager has the request, and will work
        to make the job exist in the future

        For the scheduler we will expect the scheduler's ``.address`` attribute
        to be avaialble after this completes.
        """
        self.status = Status.running

    async def close(self):
        """Close the process

        This will be called by the Cluster object when we scale down a node,
        but only after we ask the Scheduler to close the worker gracefully.
        This method should kill the process a bit more forcefully and does not
        need to worry about shutting down gracefully
        """
        self.status = Status.closed
        self._event_finished.set()

    async def finished(self):
        """ Wait until the server has finished """
        await self._event_finished.wait()

    def __repr__(self):
        return "<%s: status=%s>" % (type(self).__name__, self.status)

    async def __aenter__(self):
        await self
        return self

    async def __aexit__(self, *args, **kwargs):
        await self.close()


class NoOpAwaitable:
    """An awaitable object that always returns None.

    Useful to return from a method that can be called in both asynchronous and
    synchronous contexts"""

    def __await__(self):
        async def f():
            return None

        return f().__await__()


class SpecCluster(Cluster):
    """Cluster that requires a full specification of workers

    The SpecCluster class expects a full specification of the Scheduler and
    Workers to use.  It removes any handling of user inputs (like threads vs
    processes, number of cores, and so on) and any handling of cluster resource
    managers (like pods, jobs, and so on).  Instead, it expects this
    information to be passed in scheduler and worker specifications.  This
    class does handle all of the logic around asynchronously cleanly setting up
    and tearing things down at the right times.  Hopefully it can form a base
    for other more user-centric classes.

    Parameters
    ----------
    workers: dict
        A dictionary mapping names to worker classes and their specifications
        See example below
    scheduler: dict, optional
        A similar mapping for a scheduler
    worker: dict
        A specification of a single worker.
        This is used for any new workers that are created.
    asynchronous: bool
        If this is intended to be used directly within an event loop with
        async/await
    silence_logs: bool
        Whether or not we should silence logging when setting up the cluster.
    name: str, optional
        A name to use when printing out the cluster, defaults to type name

    Examples
    --------
    To create a SpecCluster you specify how to set up a Scheduler and Workers

    >>> from dask.distributed import Scheduler, Worker, Nanny
    >>> scheduler = {'cls': Scheduler, 'options': {"dashboard_address": ':8787'}}
    >>> workers = {
    ...     'my-worker': {"cls": Worker, "options": {"nthreads": 1}},
    ...     'my-nanny': {"cls": Nanny, "options": {"nthreads": 2}},
    ... }
    >>> cluster = SpecCluster(scheduler=scheduler, workers=workers)

    The worker spec is stored as the ``.worker_spec`` attribute

    >>> cluster.worker_spec
    {
       'my-worker': {"cls": Worker, "options": {"nthreads": 1}},
       'my-nanny': {"cls": Nanny, "options": {"nthreads": 2}},
    }

    While the instantiation of this spec is stored in the ``.workers``
    attribute

    >>> cluster.workers
    {
        'my-worker': <Worker ...>
        'my-nanny': <Nanny ...>
    }

    Should the spec change, we can await the cluster or call the
    ``._correct_state`` method to align the actual state to the specified
    state.

    We can also ``.scale(...)`` the cluster, which adds new workers of a given
    form.

    >>> worker = {'cls': Worker, 'options': {}}
    >>> cluster = SpecCluster(scheduler=scheduler, worker=worker)
    >>> cluster.worker_spec
    {}

    >>> cluster.scale(3)
    >>> cluster.worker_spec
    {
        0: {'cls': Worker, 'options': {}},
        1: {'cls': Worker, 'options': {}},
        2: {'cls': Worker, 'options': {}},
    }

    Note that above we are using the standard ``Worker`` and ``Nanny`` classes,
    however in practice other classes could be used that handle resource
    management like ``KubernetesPod`` or ``SLURMJob``.  The spec does not need
    to conform to the expectations of the standard Dask Worker class.  It just
    needs to be called with the provided options, support ``__await__`` and
    ``close`` methods and the ``worker_address`` property..

    Also note that uniformity of the specification is not required.  Other API
    could be added externally (in subclasses) that adds workers of different
    specifications into the same dictionary.

    If a single entry in the spec will generate multiple dask workers then
    please provide a `"group"` element to the spec, that includes the suffixes
    that will be added to each name (this should be handled by your worker
    class).

    >>> cluster.worker_spec
    {
        0: {"cls": MultiWorker, "options": {"processes": 3}, "group": ["-0", "-1", -2"]}
        1: {"cls": MultiWorker, "options": {"processes": 2}, "group": ["-0", "-1"]}
    }

    These suffixes should correspond to the names used by the workers when
    they deploy.

    >>> [ws.name for ws in cluster.scheduler.workers.values()]
    ["0-0", "0-1", "0-2", "1-0", "1-1"]
    """

    _instances = weakref.WeakSet()

    def __init__(
        self,
        workers=None,
        scheduler=None,
        worker=None,
        asynchronous=False,
        loop=None,
        security=None,
        silence_logs=False,
        name=None,
    ):
        self._created = weakref.WeakSet()

        self.scheduler_spec = copy.copy(scheduler)
        self.worker_spec = copy.copy(workers) or {}
        self.new_spec = copy.copy(worker)
        self.workers = {}
        self._i = 0
        self.security = security or Security()
        self._futures = set()

        if silence_logs:
            self._old_logging_level = silence_logging(level=silence_logs)
            self._old_bokeh_logging_level = silence_logging(
                level=silence_logs, root="bokeh"
            )

        self._loop_runner = LoopRunner(loop=loop, asynchronous=asynchronous)
        self.loop = self._loop_runner.loop

        self._instances.add(self)
        self._correct_state_waiting = None
        self._name = name or type(self).__name__

        super().__init__(asynchronous=asynchronous)

        if not self.asynchronous:
            self._loop_runner.start()
            self.sync(self._start)
            self.sync(self._correct_state)

    async def _start(self):
        while self.status == Status.starting:
            await asyncio.sleep(0.01)
        if self.status == Status.running:
            return
        if self.status == Status.closed:
            raise ValueError("Cluster is closed")

        self._lock = asyncio.Lock()

        if self.scheduler_spec is None:
            try:
                import distributed.dashboard  # noqa: F401
            except ImportError:
                pass
            else:
                options = {"dashboard": True}
            self.scheduler_spec = {"cls": Scheduler, "options": options}

        cls = self.scheduler_spec["cls"]
        if isinstance(cls, str):
            cls = import_term(cls)
        self.scheduler = cls(**self.scheduler_spec.get("options", {}))

        self.status = Status.starting
        self.scheduler = await self.scheduler
        self.scheduler_comm = rpc(
            getattr(self.scheduler, "external_address", None) or self.scheduler.address,
            connection_args=self.security.get_connection_args("client"),
        )
        await super()._start()

    def _correct_state(self):
        if self._correct_state_waiting:
            # If people call this frequently, we only want to run it once
            return self._correct_state_waiting
        else:
            task = asyncio.ensure_future(self._correct_state_internal())
            self._correct_state_waiting = task
            return task

    async def _correct_state_internal(self):
        async with self._lock:
            self._correct_state_waiting = None

            pre = list(set(self.workers))
            to_close = set(self.workers) - set(self.worker_spec)
            if to_close:
                if self.scheduler.status == Status.running:
                    await self.scheduler_comm.retire_workers(workers=list(to_close))
                tasks = [self.workers[w].close() for w in to_close if w in self.workers]
                await asyncio.wait(tasks)
                for task in tasks:  # for tornado gen.coroutine support
                    with suppress(RuntimeError):
                        await task
            for name in to_close:
                if name in self.workers:
                    del self.workers[name]

            to_open = set(self.worker_spec) - set(self.workers)
            workers = []
            for name in to_open:
                d = self.worker_spec[name]
                cls, opts = d["cls"], d.get("options", {})
                if "name" not in opts:
                    opts = opts.copy()
                    opts["name"] = name
                if isinstance(cls, str):
                    cls = import_term(cls)
                worker = cls(self.scheduler.address, **opts)
                self._created.add(worker)
                workers.append(worker)
            if workers:
                await asyncio.wait(workers)
                for w in workers:
                    w._cluster = weakref.ref(self)
                    await w  # for tornado gen.coroutine support
            self.workers.update(dict(zip(to_open, workers)))

    def _update_worker_status(self, op, msg):
        if op == "remove":
            name = self.scheduler_info["workers"][msg]["name"]

            def f():
                if (
                    name in self.workers
                    and msg not in self.scheduler_info["workers"]
                    and not any(
                        d["name"] == name
                        for d in self.scheduler_info["workers"].values()
                    )
                ):
                    self._futures.add(asyncio.ensure_future(self.workers[name].close()))
                    del self.workers[name]

            delay = parse_timedelta(
                dask.config.get("distributed.deploy.lost-worker-timeout")
            )

            asyncio.get_event_loop().call_later(delay, f)
        super()._update_worker_status(op, msg)

    def __await__(self):
        async def _():
            if self.status == Status.created:
                await self._start()
            await self.scheduler
            await self._correct_state()
            if self.workers:
                await asyncio.wait(list(self.workers.values()))  # maybe there are more
            return self

        return _().__await__()

    async def _close(self):
        while self.status == Status.closing:
            await asyncio.sleep(0.1)
        if self.status == Status.closed:
            return
        if self.status == Status.running:
            self.status = Status.closing
            self.scale(0)
            await self._correct_state()
            for future in self._futures:
                await future
            async with self._lock:
                with suppress(CommClosedError):
                    if self.scheduler_comm:
                        await self.scheduler_comm.close(close_workers=True)
                    else:
                        logger.warning("Cluster closed without starting up")

            await self.scheduler.close()
            for w in self._created:
                assert w.status == Status.closed, w.status

        if hasattr(self, "_old_logging_level"):
            silence_logging(self._old_logging_level)
        if hasattr(self, "_old_bokeh_logging_level"):
            silence_logging(self._old_bokeh_logging_level, root="bokeh")

        await super()._close()

    async def __aenter__(self):
        await self
        await self._correct_state()
        assert self.status == Status.running
        return self

    def __exit__(self, typ, value, traceback):
        super().__exit__(typ, value, traceback)
        self._loop_runner.stop()

    def _threads_per_worker(self) -> int:
        """ Return the number of threads per worker for new workers """
        if not self.new_spec:
            raise ValueError("To scale by cores= you must specify cores per worker")

        for name in ["nthreads", "ncores", "threads", "cores"]:
            with suppress(KeyError):
                return self.new_spec["options"][name]

        if not self.new_spec:
            raise ValueError("To scale by cores= you must specify cores per worker")

    def _memory_per_worker(self) -> int:
        """ Return the memory limit per worker for new workers """
        if not self.new_spec:
            raise ValueError(
                "to scale by memory= your worker definition must include a memory_limit definition"
            )

        for name in ["memory_limit", "memory"]:
            with suppress(KeyError):
                return parse_bytes(self.new_spec["options"][name])

        raise ValueError(
            "to use scale(memory=...) your worker definition must include a memory_limit definition"
        )

    def scale(self, n=0, memory=None, cores=None):
        if memory is not None:
            n = max(n, int(math.ceil(parse_bytes(memory) / self._memory_per_worker())))

        if cores is not None:
            n = max(n, int(math.ceil(cores / self._threads_per_worker())))

        if len(self.worker_spec) > n:
            not_yet_launched = set(self.worker_spec) - {
                v["name"] for v in self.scheduler_info["workers"].values()
            }
            while len(self.worker_spec) > n and not_yet_launched:
                del self.worker_spec[not_yet_launched.pop()]

        while len(self.worker_spec) > n:
            self.worker_spec.popitem()

        if self.status not in (Status.closing, Status.closed):
            while len(self.worker_spec) < n:
                self.worker_spec.update(self.new_worker_spec())

        self.loop.add_callback(self._correct_state)

        if self.asynchronous:
            return NoOpAwaitable()

    def _new_worker_name(self, worker_number):
        """Returns new worker name.

        This can be overriden in SpecCluster derived classes to customise the
        worker names.
        """
        return worker_number

    def new_worker_spec(self):
        """Return name and spec for the next worker

        Returns
        -------
        d: dict mapping names to worker specs

        See Also
        --------
        scale
        """
        new_worker_name = self._new_worker_name(self._i)
        while new_worker_name in self.worker_spec:
            self._i += 1
            new_worker_name = self._new_worker_name(self._i)

        return {new_worker_name: self.new_spec}

    @property
    def _supports_scaling(self):
        return not not self.new_spec

    async def scale_down(self, workers):
        # We may have groups, if so, map worker addresses to job names
        if not all(w in self.worker_spec for w in workers):
            mapping = {}
            for name, spec in self.worker_spec.items():
                if "group" in spec:
                    for suffix in spec["group"]:
                        mapping[str(name) + suffix] = name
                else:
                    mapping[name] = name

            workers = {mapping.get(w, w) for w in workers}

        for w in workers:
            if w in self.worker_spec:
                del self.worker_spec[w]
        await self

    scale_up = scale  # backwards compatibility

    @property
    def plan(self):
        out = set()
        for name, spec in self.worker_spec.items():
            if "group" in spec:
                out.update({str(name) + suffix for suffix in spec["group"]})
            else:
                out.add(name)
        return out

    @property
    def requested(self):
        out = set()
        for name in self.workers:
            try:
                spec = self.worker_spec[name]
            except KeyError:
                continue
            if "group" in spec:
                out.update({str(name) + suffix for suffix in spec["group"]})
            else:
                out.add(name)
        return out

    def adapt(
        self,
        *args,
        minimum=0,
        maximum=math.inf,
        minimum_cores: int = None,
        maximum_cores: int = None,
        minimum_memory: str = None,
        maximum_memory: str = None,
        **kwargs,
    ) -> Adaptive:
        """Turn on adaptivity

        This scales Dask clusters automatically based on scheduler activity.

        Parameters
        ----------
        minimum : int
            Minimum number of workers
        maximum : int
            Maximum number of workers
        minimum_cores : int
            Minimum number of cores/threads to keep around in the cluster
        maximum_cores : int
            Maximum number of cores/threads to keep around in the cluster
        minimum_memory : str
            Minimum amount of memory to keep around in the cluster
            Expressed as a string like "100 GiB"
        maximum_memory : str
            Maximum amount of memory to keep around in the cluster
            Expressed as a string like "100 GiB"

        Examples
        --------
        >>> cluster.adapt(minimum=0, maximum_memory="100 GiB", interval='500ms')

        See Also
        --------
        dask.distributed.Adaptive : for more keyword arguments
        """
        if minimum_cores is not None:
            minimum = max(
                minimum or 0, math.ceil(minimum_cores / self._threads_per_worker())
            )
        if minimum_memory is not None:
            minimum = max(
                minimum or 0,
                math.ceil(parse_bytes(minimum_memory) / self._memory_per_worker()),
            )
        if maximum_cores is not None:
            maximum = min(
                maximum, math.floor(maximum_cores / self._threads_per_worker())
            )
        if maximum_memory is not None:
            maximum = min(
                maximum,
                math.floor(parse_bytes(maximum_memory) / self._memory_per_worker()),
            )

        return super().adapt(*args, minimum=minimum, maximum=maximum, **kwargs)


async def run_spec(spec: dict, *args):
    workers = {}
    for k, d in spec.items():
        cls = d["cls"]
        if isinstance(cls, str):
            cls = import_term(cls)
        workers[k] = cls(*args, **d.get("opts", {}))

    if workers:
        await asyncio.gather(*workers.values())
        for w in workers.values():
            await w  # for tornado gen.coroutine support
    return workers


@atexit.register
def close_clusters():
    for cluster in list(SpecCluster._instances):
        with suppress(gen.TimeoutError, TimeoutError):
            if cluster.status != Status.closed:
                cluster.close(timeout=10)