from .serialize import dask_serialize, dask_deserialize, serialize, deserialize
import keras
@dask_serialize.register(keras.Model)
def serialize_keras_model(model):
import keras
if keras.__version__ < "1.2.0":
raise ImportError(
"Need Keras >= 1.2.0. Try python -m pip install keras --upgrade --no-deps"
)
header = model._updated_config()
weights = model.get_weights()
headers, frames = list(zip(*map(serialize, weights)))
header["headers"] = headers
header["nframes"] = [len(L) for L in frames]
frames = [frame for L in frames for frame in L]
return header, frames
@dask_deserialize.register(keras.Model)
def deserialize_keras_model(header, frames):
from keras.models import model_from_config
n = 0
weights = []
for head, length in zip(header["headers"], header["nframes"]):
x = deserialize(head, frames[n : n + length])
weights.append(x)
n += length
model = model_from_config(header)
model.set_weights(weights)
return model