1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228 | from distutils.version import LooseVersion
import pytest
pytest.importorskip("numpy")
pytest.importorskip("pandas")
import dask
import dask.dataframe as dd
import dask.bag as db
from distributed.client import wait
from distributed.utils_test import gen_cluster
from distributed.utils_test import client, cluster_fixture, loop # noqa F401
import numpy as np
import pandas as pd
PANDAS_VERSION = LooseVersion(pd.__version__)
PANDAS_GT_100 = PANDAS_VERSION >= LooseVersion("1.0.0")
if PANDAS_GT_100:
import pandas.testing as tm # noqa: F401
else:
import pandas.util.testing as tm # noqa: F401
dfs = [
pd.DataFrame({"x": [1, 2, 3]}, index=[0, 10, 20]),
pd.DataFrame({"x": [4, 5, 6]}, index=[30, 40, 50]),
pd.DataFrame({"x": [7, 8, 9]}, index=[60, 70, 80]),
]
def assert_equal(a, b):
assert type(a) == type(b)
if isinstance(a, pd.DataFrame):
tm.assert_frame_equal(a, b)
elif isinstance(a, pd.Series):
tm.assert_series_equal(a, b)
elif isinstance(a, pd.Index):
tm.assert_index_equal(a, b)
else:
assert a == b
@gen_cluster(timeout=240, client=True)
async def test_dataframes(c, s, a, b):
df = pd.DataFrame(
{"x": np.random.random(1000), "y": np.random.random(1000)},
index=np.arange(1000),
)
ldf = dd.from_pandas(df, npartitions=10)
rdf = c.persist(ldf)
assert rdf.divisions == ldf.divisions
remote = c.compute(rdf)
result = await remote
tm.assert_frame_equal(result, ldf.compute(scheduler="sync"))
exprs = [
lambda df: df.x.mean(),
lambda df: df.y.std(),
lambda df: df.assign(z=df.x + df.y).drop_duplicates(),
lambda df: df.index,
lambda df: df.x,
lambda df: df.x.cumsum(),
lambda df: df.groupby(["x", "y"]).count(),
lambda df: df.loc[50:75],
]
for f in exprs:
local = f(ldf).compute(scheduler="sync")
remote = c.compute(f(rdf))
remote = await remote
assert_equal(local, remote)
@gen_cluster(client=True)
async def test_dask_array_collections(c, s, a, b):
import dask.array as da
s.validate = False
x_dsk = {("x", i, j): np.random.random((3, 3)) for i in range(3) for j in range(2)}
y_dsk = {("y", i, j): np.random.random((3, 3)) for i in range(2) for j in range(3)}
x_futures = await c.scatter(x_dsk)
y_futures = await c.scatter(y_dsk)
dt = np.random.random(0).dtype
x_local = da.Array(x_dsk, "x", ((3, 3, 3), (3, 3)), dt)
y_local = da.Array(y_dsk, "y", ((3, 3), (3, 3, 3)), dt)
x_remote = da.Array(x_futures, "x", ((3, 3, 3), (3, 3)), dt)
y_remote = da.Array(y_futures, "y", ((3, 3), (3, 3, 3)), dt)
exprs = [
lambda x, y: x.T + y,
lambda x, y: x.mean() + y.mean(),
lambda x, y: x.dot(y).std(axis=0),
lambda x, y: x - x.mean(axis=1)[:, None],
]
for expr in exprs:
local = expr(x_local, y_local).compute(scheduler="sync")
remote = c.compute(expr(x_remote, y_remote))
remote = await remote
assert np.all(local == remote)
@gen_cluster(client=True)
async def test_bag_groupby_tasks_default(c, s, a, b):
b = db.range(100, npartitions=10)
b2 = b.groupby(lambda x: x % 13)
assert not any("partd" in k[0] for k in b2.dask)
@pytest.mark.parametrize("wait", [wait, lambda x: None])
def test_dataframe_set_index_sync(wait, client):
df = dask.datasets.timeseries(
start="2000",
end="2001",
dtypes={"value": float, "name": str, "id": int},
freq="2H",
partition_freq="1M",
seed=1,
)
df = df.persist()
wait(df)
df2 = df.set_index("name", shuffle="tasks")
df2 = df2.persist()
assert len(df2)
def make_time_dataframe():
return pd.DataFrame(
np.random.randn(30, 4),
columns=list("ABCD"),
index=pd.date_range("2000", periods=30, freq="B"),
)
def test_loc_sync(client):
df = make_time_dataframe()
ddf = dd.from_pandas(df, npartitions=10)
ddf.loc["2000-01-17":"2000-01-24"].compute()
def test_rolling_sync(client):
df = make_time_dataframe()
ddf = dd.from_pandas(df, npartitions=10)
ddf.A.rolling(2).mean().compute()
@gen_cluster(client=True)
async def test_loc(c, s, a, b):
df = make_time_dataframe()
ddf = dd.from_pandas(df, npartitions=10)
future = c.compute(ddf.loc["2000-01-17":"2000-01-24"])
await future
def test_dataframe_groupby_tasks(client):
df = make_time_dataframe()
df["A"] = df.A // 0.1
df["B"] = df.B // 0.1
ddf = dd.from_pandas(df, npartitions=10)
for ind in [lambda x: "A", lambda x: x.A]:
a = df.groupby(ind(df)).apply(len)
b = ddf.groupby(ind(ddf)).apply(len, meta=int)
assert_equal(a, b.compute(scheduler="sync").sort_index())
assert not any("partd" in k[0] for k in b.dask)
a = df.groupby(ind(df)).B.apply(len)
b = ddf.groupby(ind(ddf)).B.apply(len, meta=("B", int))
assert_equal(a, b.compute(scheduler="sync").sort_index())
assert not any("partd" in k[0] for k in b.dask)
with pytest.raises((NotImplementedError, ValueError)):
ddf.groupby(ddf[["A", "B"]]).apply(len, meta=int)
a = df.groupby(["A", "B"]).apply(len)
b = ddf.groupby(["A", "B"]).apply(len, meta=int)
assert_equal(a, b.compute(scheduler="sync").sort_index())
@gen_cluster(client=True)
async def test_sparse_arrays(c, s, a, b):
sparse = pytest.importorskip("sparse")
da = pytest.importorskip("dask.array")
x = da.random.random((100, 10), chunks=(10, 10))
x[x < 0.95] = 0
s = x.map_blocks(sparse.COO)
future = c.compute(s.sum(axis=0)[:10])
await future
@gen_cluster(client=True, nthreads=[("127.0.0.1", 1)])
async def test_delayed_none(c, s, w):
x = dask.delayed(None)
y = dask.delayed(123)
[xx, yy] = c.compute([x, y])
assert await xx is None
assert await yy == 123
@pytest.mark.parametrize("typ", [tuple, list])
def test_tuple_futures_arg(client, typ):
x = client.submit(
make_time_dataframe,
)
df2 = client.submit(
pd.concat,
typ(
[
x,
]
),
)
dd.assert_eq(df2.result().iloc[:0], make_time_dataframe().iloc[:0])
|