1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390 | import asyncio
from collections import defaultdict
from functools import partial
from itertools import cycle
import logging
import random
from dask.optimization import SubgraphCallable
import dask.config
from dask.utils import parse_timedelta
from tlz import merge, concat, groupby, drop
from .core import rpc
from .utils import All, tokey
logger = logging.getLogger(__name__)
async def gather_from_workers(who_has, rpc, close=True, serializers=None, who=None):
"""Gather data directly from peers
Parameters
----------
who_has: dict
Dict mapping keys to sets of workers that may have that key
rpc: callable
Returns dict mapping key to value
See Also
--------
gather
_gather
"""
from .worker import get_data_from_worker
bad_addresses = set()
missing_workers = set()
original_who_has = who_has
who_has = {k: set(v) for k, v in who_has.items()}
results = dict()
all_bad_keys = set()
while len(results) + len(all_bad_keys) < len(who_has):
d = defaultdict(list)
rev = dict()
bad_keys = set()
for key, addresses in who_has.items():
if key in results:
continue
try:
addr = random.choice(list(addresses - bad_addresses))
d[addr].append(key)
rev[key] = addr
except IndexError:
bad_keys.add(key)
if bad_keys:
all_bad_keys |= bad_keys
rpcs = {addr: rpc(addr) for addr in d}
try:
coroutines = {
address: asyncio.ensure_future(
get_data_from_worker(
rpc,
keys,
address,
who=who,
serializers=serializers,
max_connections=False,
)
)
for address, keys in d.items()
}
response = {}
for worker, c in coroutines.items():
try:
r = await c
except EnvironmentError:
missing_workers.add(worker)
except ValueError as e:
logger.info(
"Got an unexpected error while collecting from workers: %s", e
)
missing_workers.add(worker)
else:
response.update(r["data"])
finally:
for r in rpcs.values():
await r.close_rpc()
bad_addresses |= {v for k, v in rev.items() if k not in response}
results.update(response)
bad_keys = {k: list(original_who_has[k]) for k in all_bad_keys}
return (results, bad_keys, list(missing_workers))
class WrappedKey:
"""Interface for a key in a dask graph.
Subclasses must have .key attribute that refers to a key in a dask graph.
Sometimes we want to associate metadata to keys in a dask graph. For
example we might know that that key lives on a particular machine or can
only be accessed in a certain way. Schedulers may have particular needs
that can only be addressed by additional metadata.
"""
def __init__(self, key):
self.key = key
def __repr__(self):
return "%s('%s')" % (type(self).__name__, self.key)
_round_robin_counter = [0]
async def scatter_to_workers(nthreads, data, rpc=rpc, report=True, serializers=None):
"""Scatter data directly to workers
This distributes data in a round-robin fashion to a set of workers based on
how many cores they have. nthreads should be a dictionary mapping worker
identities to numbers of cores.
See scatter for parameter docstring
"""
assert isinstance(nthreads, dict)
assert isinstance(data, dict)
workers = list(concat([w] * nc for w, nc in nthreads.items()))
names, data = list(zip(*data.items()))
worker_iter = drop(_round_robin_counter[0] % len(workers), cycle(workers))
_round_robin_counter[0] += len(data)
L = list(zip(worker_iter, names, data))
d = groupby(0, L)
d = {worker: {key: value for _, key, value in v} for worker, v in d.items()}
rpcs = {addr: rpc(addr) for addr in d}
try:
out = await All(
[
rpcs[address].update_data(
data=v, report=report, serializers=serializers
)
for address, v in d.items()
]
)
finally:
for r in rpcs.values():
await r.close_rpc()
nbytes = merge(o["nbytes"] for o in out)
who_has = {k: [w for w, _, _ in v] for k, v in groupby(1, L).items()}
return (names, who_has, nbytes)
collection_types = (tuple, list, set, frozenset)
def unpack_remotedata(o, byte_keys=False, myset=None):
"""Unpack WrappedKey objects from collection
Returns original collection and set of all found WrappedKey objects
Examples
--------
>>> rd = WrappedKey('mykey')
>>> unpack_remotedata(1)
(1, set())
>>> unpack_remotedata(())
((), set())
>>> unpack_remotedata(rd)
('mykey', {WrappedKey('mykey')})
>>> unpack_remotedata([1, rd])
([1, 'mykey'], {WrappedKey('mykey')})
>>> unpack_remotedata({1: rd})
({1: 'mykey'}, {WrappedKey('mykey')})
>>> unpack_remotedata({1: [rd]})
({1: ['mykey']}, {WrappedKey('mykey')})
Use the ``byte_keys=True`` keyword to force string keys
>>> rd = WrappedKey(('x', 1))
>>> unpack_remotedata(rd, byte_keys=True)
("('x', 1)", {WrappedKey('('x', 1)')})
"""
if myset is None:
myset = set()
out = unpack_remotedata(o, byte_keys, myset)
return out, myset
typ = type(o)
if typ is tuple:
if not o:
return o
if type(o[0]) is SubgraphCallable:
sc = o[0]
futures = set()
dsk = {
k: unpack_remotedata(v, byte_keys, futures) for k, v in sc.dsk.items()
}
args = tuple(unpack_remotedata(i, byte_keys, futures) for i in o[1:])
if futures:
myset.update(futures)
futures = (
tuple(tokey(f.key) for f in futures)
if byte_keys
else tuple(f.key for f in futures)
)
inkeys = sc.inkeys + futures
return (
(SubgraphCallable(dsk, sc.outkey, inkeys, sc.name),)
+ args
+ futures
)
else:
return o
else:
return tuple(unpack_remotedata(item, byte_keys, myset) for item in o)
if typ in collection_types:
if not o:
return o
outs = [unpack_remotedata(item, byte_keys, myset) for item in o]
return typ(outs)
elif typ is dict:
if o:
return {k: unpack_remotedata(v, byte_keys, myset) for k, v in o.items()}
else:
return o
elif issubclass(typ, WrappedKey): # TODO use type is Future
k = o.key
if byte_keys:
k = tokey(k)
myset.add(o)
return k
else:
return o
def pack_data(o, d, key_types=object):
"""Merge known data into tuple or dict
Parameters
----------
o:
core data structures containing literals and keys
d: dict
mapping of keys to data
Examples
--------
>>> data = {'x': 1}
>>> pack_data(('x', 'y'), data)
(1, 'y')
>>> pack_data({'a': 'x', 'b': 'y'}, data) # doctest: +SKIP
{'a': 1, 'b': 'y'}
>>> pack_data({'a': ['x'], 'b': 'y'}, data) # doctest: +SKIP
{'a': [1], 'b': 'y'}
"""
typ = type(o)
try:
if isinstance(o, key_types) and o in d:
return d[o]
except TypeError:
pass
if typ in collection_types:
return typ([pack_data(x, d, key_types=key_types) for x in o])
elif typ is dict:
return {k: pack_data(v, d, key_types=key_types) for k, v in o.items()}
else:
return o
def subs_multiple(o, d):
"""Perform substitutions on a tasks
Parameters
----------
o:
Core data structures containing literals and keys
d: dict
Mapping of keys to values
Examples
--------
>>> dsk = {"a": (sum, ["x", 2])}
>>> data = {"x": 1}
>>> subs_multiple(dsk, data) # doctest: +SKIP
{'a': (sum, [1, 2])}
"""
typ = type(o)
if typ is tuple and o and callable(o[0]): # istask(o)
return (o[0],) + tuple(subs_multiple(i, d) for i in o[1:])
elif typ is list:
return [subs_multiple(i, d) for i in o]
elif typ is dict:
return {k: subs_multiple(v, d) for (k, v) in o.items()}
else:
try:
return d.get(o, o)
except TypeError:
return o
async def retry(
coro,
count,
delay_min,
delay_max,
jitter_fraction=0.1,
retry_on_exceptions=(EnvironmentError, IOError),
operation=None,
):
"""
Return the result of ``await coro()``, re-trying in case of exceptions
The delay between attempts is ``delay_min * (2 ** i - 1)`` where ``i`` enumerates the attempt that just failed
(starting at 0), but never larger than ``delay_max``.
This yields no delay between the first and second attempt, then ``delay_min``, ``3 * delay_min``, etc.
(The reason to re-try with no delay is that in most cases this is sufficient and will thus recover faster
from a communication failure).
Parameters
----------
coro
The coroutine function to call and await
count
The maximum number of re-tries before giving up. 0 means no re-try; must be >= 0.
delay_min
The base factor for the delay (in seconds); this is the first non-zero delay between re-tries.
delay_max
The maximum delay (in seconds) between consecutive re-tries (without jitter)
jitter_fraction
The maximum jitter to add to the delay, as fraction of the total delay. No jitter is added if this
value is <= 0.
Using a non-zero value here avoids "herd effects" of many operations re-tried at the same time
retry_on_exceptions
A tuple of exception classes to retry. Other exceptions are not caught and re-tried, but propagate immediately.
operation
A human-readable description of the operation attempted; used only for logging failures
Returns
-------
Any
Whatever `await `coro()` returned
"""
# this loop is a no-op in case max_retries<=0
for i_try in range(count):
try:
return await coro()
except retry_on_exceptions as ex:
operation = operation or str(coro)
logger.info(
f"Retrying {operation} after exception in attempt {i_try}/{count}: {ex}"
)
delay = min(delay_min * (2 ** i_try - 1), delay_max)
if jitter_fraction > 0:
delay *= 1 + random.random() * jitter_fraction
await asyncio.sleep(delay)
return await coro()
async def retry_operation(coro, *args, operation=None, **kwargs):
"""
Retry an operation using the configuration values for the retry parameters
"""
retry_count = dask.config.get("distributed.comm.retry.count")
retry_delay_min = parse_timedelta(
dask.config.get("distributed.comm.retry.delay.min"), default="s"
)
retry_delay_max = parse_timedelta(
dask.config.get("distributed.comm.retry.delay.max"), default="s"
)
return await retry(
partial(coro, *args, **kwargs),
count=retry_count,
delay_min=retry_delay_min,
delay_max=retry_delay_max,
operation=operation,
)
|