1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359 | from django.contrib.gis.db.models.fields import BaseSpatialField
from django.contrib.gis.measure import Distance
from django.db import NotSupportedError
from django.db.models import Expression, Lookup, Transform
from django.db.models.sql.query import Query
from django.utils.regex_helper import _lazy_re_compile
class RasterBandTransform(Transform):
def as_sql(self, compiler, connection):
return compiler.compile(self.lhs)
class GISLookup(Lookup):
sql_template = None
transform_func = None
distance = False
band_rhs = None
band_lhs = None
def __init__(self, lhs, rhs):
rhs, *self.rhs_params = rhs if isinstance(rhs, (list, tuple)) else [rhs]
super().__init__(lhs, rhs)
self.template_params = {}
self.process_rhs_params()
def process_rhs_params(self):
if self.rhs_params:
# Check if a band index was passed in the query argument.
if len(self.rhs_params) == (2 if self.lookup_name == 'relate' else 1):
self.process_band_indices()
elif len(self.rhs_params) > 1:
raise ValueError('Tuple too long for lookup %s.' % self.lookup_name)
elif isinstance(self.lhs, RasterBandTransform):
self.process_band_indices(only_lhs=True)
def process_band_indices(self, only_lhs=False):
"""
Extract the lhs band index from the band transform class and the rhs
band index from the input tuple.
"""
# PostGIS band indices are 1-based, so the band index needs to be
# increased to be consistent with the GDALRaster band indices.
if only_lhs:
self.band_rhs = 1
self.band_lhs = self.lhs.band_index + 1
return
if isinstance(self.lhs, RasterBandTransform):
self.band_lhs = self.lhs.band_index + 1
else:
self.band_lhs = 1
self.band_rhs, *self.rhs_params = self.rhs_params
def get_db_prep_lookup(self, value, connection):
# get_db_prep_lookup is called by process_rhs from super class
return ('%s', [connection.ops.Adapter(value)])
def process_rhs(self, compiler, connection):
if isinstance(self.rhs, Query):
# If rhs is some Query, don't touch it.
return super().process_rhs(compiler, connection)
if isinstance(self.rhs, Expression):
self.rhs = self.rhs.resolve_expression(compiler.query)
rhs, rhs_params = super().process_rhs(compiler, connection)
placeholder = connection.ops.get_geom_placeholder(self.lhs.output_field, self.rhs, compiler)
return placeholder % rhs, rhs_params
def get_rhs_op(self, connection, rhs):
# Unlike BuiltinLookup, the GIS get_rhs_op() implementation should return
# an object (SpatialOperator) with an as_sql() method to allow for more
# complex computations (where the lhs part can be mixed in).
return connection.ops.gis_operators[self.lookup_name]
def as_sql(self, compiler, connection):
lhs_sql, lhs_params = self.process_lhs(compiler, connection)
rhs_sql, rhs_params = self.process_rhs(compiler, connection)
sql_params = (*lhs_params, *rhs_params)
template_params = {'lhs': lhs_sql, 'rhs': rhs_sql, 'value': '%s', **self.template_params}
rhs_op = self.get_rhs_op(connection, rhs_sql)
return rhs_op.as_sql(connection, self, template_params, sql_params)
# ------------------
# Geometry operators
# ------------------
@BaseSpatialField.register_lookup
class OverlapsLeftLookup(GISLookup):
"""
The overlaps_left operator returns true if A's bounding box overlaps or is to the
left of B's bounding box.
"""
lookup_name = 'overlaps_left'
@BaseSpatialField.register_lookup
class OverlapsRightLookup(GISLookup):
"""
The 'overlaps_right' operator returns true if A's bounding box overlaps or is to the
right of B's bounding box.
"""
lookup_name = 'overlaps_right'
@BaseSpatialField.register_lookup
class OverlapsBelowLookup(GISLookup):
"""
The 'overlaps_below' operator returns true if A's bounding box overlaps or is below
B's bounding box.
"""
lookup_name = 'overlaps_below'
@BaseSpatialField.register_lookup
class OverlapsAboveLookup(GISLookup):
"""
The 'overlaps_above' operator returns true if A's bounding box overlaps or is above
B's bounding box.
"""
lookup_name = 'overlaps_above'
@BaseSpatialField.register_lookup
class LeftLookup(GISLookup):
"""
The 'left' operator returns true if A's bounding box is strictly to the left
of B's bounding box.
"""
lookup_name = 'left'
@BaseSpatialField.register_lookup
class RightLookup(GISLookup):
"""
The 'right' operator returns true if A's bounding box is strictly to the right
of B's bounding box.
"""
lookup_name = 'right'
@BaseSpatialField.register_lookup
class StrictlyBelowLookup(GISLookup):
"""
The 'strictly_below' operator returns true if A's bounding box is strictly below B's
bounding box.
"""
lookup_name = 'strictly_below'
@BaseSpatialField.register_lookup
class StrictlyAboveLookup(GISLookup):
"""
The 'strictly_above' operator returns true if A's bounding box is strictly above B's
bounding box.
"""
lookup_name = 'strictly_above'
@BaseSpatialField.register_lookup
class SameAsLookup(GISLookup):
"""
The "~=" operator is the "same as" operator. It tests actual geometric
equality of two features. So if A and B are the same feature,
vertex-by-vertex, the operator returns true.
"""
lookup_name = 'same_as'
BaseSpatialField.register_lookup(SameAsLookup, 'exact')
@BaseSpatialField.register_lookup
class BBContainsLookup(GISLookup):
"""
The 'bbcontains' operator returns true if A's bounding box completely contains
by B's bounding box.
"""
lookup_name = 'bbcontains'
@BaseSpatialField.register_lookup
class BBOverlapsLookup(GISLookup):
"""
The 'bboverlaps' operator returns true if A's bounding box overlaps B's bounding box.
"""
lookup_name = 'bboverlaps'
@BaseSpatialField.register_lookup
class ContainedLookup(GISLookup):
"""
The 'contained' operator returns true if A's bounding box is completely contained
by B's bounding box.
"""
lookup_name = 'contained'
# ------------------
# Geometry functions
# ------------------
@BaseSpatialField.register_lookup
class ContainsLookup(GISLookup):
lookup_name = 'contains'
@BaseSpatialField.register_lookup
class ContainsProperlyLookup(GISLookup):
lookup_name = 'contains_properly'
@BaseSpatialField.register_lookup
class CoveredByLookup(GISLookup):
lookup_name = 'coveredby'
@BaseSpatialField.register_lookup
class CoversLookup(GISLookup):
lookup_name = 'covers'
@BaseSpatialField.register_lookup
class CrossesLookup(GISLookup):
lookup_name = 'crosses'
@BaseSpatialField.register_lookup
class DisjointLookup(GISLookup):
lookup_name = 'disjoint'
@BaseSpatialField.register_lookup
class EqualsLookup(GISLookup):
lookup_name = 'equals'
@BaseSpatialField.register_lookup
class IntersectsLookup(GISLookup):
lookup_name = 'intersects'
@BaseSpatialField.register_lookup
class OverlapsLookup(GISLookup):
lookup_name = 'overlaps'
@BaseSpatialField.register_lookup
class RelateLookup(GISLookup):
lookup_name = 'relate'
sql_template = '%(func)s(%(lhs)s, %(rhs)s, %%s)'
pattern_regex = _lazy_re_compile(r'^[012TF\*]{9}$')
def process_rhs(self, compiler, connection):
# Check the pattern argument
pattern = self.rhs_params[0]
backend_op = connection.ops.gis_operators[self.lookup_name]
if hasattr(backend_op, 'check_relate_argument'):
backend_op.check_relate_argument(pattern)
elif not isinstance(pattern, str) or not self.pattern_regex.match(pattern):
raise ValueError('Invalid intersection matrix pattern "%s".' % pattern)
sql, params = super().process_rhs(compiler, connection)
return sql, params + [pattern]
@BaseSpatialField.register_lookup
class TouchesLookup(GISLookup):
lookup_name = 'touches'
@BaseSpatialField.register_lookup
class WithinLookup(GISLookup):
lookup_name = 'within'
class DistanceLookupBase(GISLookup):
distance = True
sql_template = '%(func)s(%(lhs)s, %(rhs)s) %(op)s %(value)s'
def process_rhs_params(self):
if not 1 <= len(self.rhs_params) <= 3:
raise ValueError("2, 3, or 4-element tuple required for '%s' lookup." % self.lookup_name)
elif len(self.rhs_params) == 3 and self.rhs_params[2] != 'spheroid':
raise ValueError("For 4-element tuples the last argument must be the 'spheroid' directive.")
# Check if the second parameter is a band index.
if len(self.rhs_params) > 1 and self.rhs_params[1] != 'spheroid':
self.process_band_indices()
def process_distance(self, compiler, connection):
dist_param = self.rhs_params[0]
return (
compiler.compile(dist_param.resolve_expression(compiler.query))
if hasattr(dist_param, 'resolve_expression') else
('%s', connection.ops.get_distance(self.lhs.output_field, self.rhs_params, self.lookup_name))
)
@BaseSpatialField.register_lookup
class DWithinLookup(DistanceLookupBase):
lookup_name = 'dwithin'
sql_template = '%(func)s(%(lhs)s, %(rhs)s, %(value)s)'
def process_distance(self, compiler, connection):
dist_param = self.rhs_params[0]
if (
not connection.features.supports_dwithin_distance_expr and
hasattr(dist_param, 'resolve_expression') and
not isinstance(dist_param, Distance)
):
raise NotSupportedError(
'This backend does not support expressions for specifying '
'distance in the dwithin lookup.'
)
return super().process_distance(compiler, connection)
def process_rhs(self, compiler, connection):
dist_sql, dist_params = self.process_distance(compiler, connection)
self.template_params['value'] = dist_sql
rhs_sql, params = super().process_rhs(compiler, connection)
return rhs_sql, params + dist_params
class DistanceLookupFromFunction(DistanceLookupBase):
def as_sql(self, compiler, connection):
spheroid = (len(self.rhs_params) == 2 and self.rhs_params[-1] == 'spheroid') or None
distance_expr = connection.ops.distance_expr_for_lookup(self.lhs, self.rhs, spheroid=spheroid)
sql, params = compiler.compile(distance_expr.resolve_expression(compiler.query))
dist_sql, dist_params = self.process_distance(compiler, connection)
return (
'%(func)s %(op)s %(dist)s' % {'func': sql, 'op': self.op, 'dist': dist_sql},
params + dist_params,
)
@BaseSpatialField.register_lookup
class DistanceGTLookup(DistanceLookupFromFunction):
lookup_name = 'distance_gt'
op = '>'
@BaseSpatialField.register_lookup
class DistanceGTELookup(DistanceLookupFromFunction):
lookup_name = 'distance_gte'
op = '>='
@BaseSpatialField.register_lookup
class DistanceLTLookup(DistanceLookupFromFunction):
lookup_name = 'distance_lt'
op = '<'
@BaseSpatialField.register_lookup
class DistanceLTELookup(DistanceLookupFromFunction):
lookup_name = 'distance_lte'
op = '<='
|