1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302 | import psycopg2
from django.db.models import (
CharField, Expression, Field, FloatField, Func, Lookup, TextField, Value,
)
from django.db.models.expressions import CombinedExpression
from django.db.models.functions import Cast, Coalesce
class SearchVectorExact(Lookup):
lookup_name = 'exact'
def process_rhs(self, qn, connection):
if not isinstance(self.rhs, (SearchQuery, CombinedSearchQuery)):
config = getattr(self.lhs, 'config', None)
self.rhs = SearchQuery(self.rhs, config=config)
rhs, rhs_params = super().process_rhs(qn, connection)
return rhs, rhs_params
def as_sql(self, qn, connection):
lhs, lhs_params = self.process_lhs(qn, connection)
rhs, rhs_params = self.process_rhs(qn, connection)
params = lhs_params + rhs_params
return '%s @@ %s' % (lhs, rhs), params
class SearchVectorField(Field):
def db_type(self, connection):
return 'tsvector'
class SearchQueryField(Field):
def db_type(self, connection):
return 'tsquery'
class SearchConfig(Expression):
def __init__(self, config):
super().__init__()
if not hasattr(config, 'resolve_expression'):
config = Value(config)
self.config = config
@classmethod
def from_parameter(cls, config):
if config is None or isinstance(config, cls):
return config
return cls(config)
def get_source_expressions(self):
return [self.config]
def set_source_expressions(self, exprs):
self.config, = exprs
def as_sql(self, compiler, connection):
sql, params = compiler.compile(self.config)
return '%s::regconfig' % sql, params
class SearchVectorCombinable:
ADD = '||'
def _combine(self, other, connector, reversed):
if not isinstance(other, SearchVectorCombinable):
raise TypeError(
'SearchVector can only be combined with other SearchVector '
'instances, got %s.' % type(other).__name__
)
if reversed:
return CombinedSearchVector(other, connector, self, self.config)
return CombinedSearchVector(self, connector, other, self.config)
class SearchVector(SearchVectorCombinable, Func):
function = 'to_tsvector'
arg_joiner = " || ' ' || "
output_field = SearchVectorField()
def __init__(self, *expressions, config=None, weight=None):
super().__init__(*expressions)
self.config = SearchConfig.from_parameter(config)
if weight is not None and not hasattr(weight, 'resolve_expression'):
weight = Value(weight)
self.weight = weight
def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
resolved = super().resolve_expression(query, allow_joins, reuse, summarize, for_save)
if self.config:
resolved.config = self.config.resolve_expression(query, allow_joins, reuse, summarize, for_save)
return resolved
def as_sql(self, compiler, connection, function=None, template=None):
clone = self.copy()
clone.set_source_expressions([
Coalesce(
expression
if isinstance(expression.output_field, (CharField, TextField))
else Cast(expression, TextField()),
Value('')
) for expression in clone.get_source_expressions()
])
config_sql = None
config_params = []
if template is None:
if clone.config:
config_sql, config_params = compiler.compile(clone.config)
template = '%(function)s(%(config)s, %(expressions)s)'
else:
template = clone.template
sql, params = super(SearchVector, clone).as_sql(
compiler, connection, function=function, template=template,
config=config_sql,
)
extra_params = []
if clone.weight:
weight_sql, extra_params = compiler.compile(clone.weight)
sql = 'setweight({}, {})'.format(sql, weight_sql)
return sql, config_params + params + extra_params
class CombinedSearchVector(SearchVectorCombinable, CombinedExpression):
def __init__(self, lhs, connector, rhs, config, output_field=None):
self.config = config
super().__init__(lhs, connector, rhs, output_field)
class SearchQueryCombinable:
BITAND = '&&'
BITOR = '||'
def _combine(self, other, connector, reversed):
if not isinstance(other, SearchQueryCombinable):
raise TypeError(
'SearchQuery can only be combined with other SearchQuery '
'instances, got %s.' % type(other).__name__
)
if reversed:
return CombinedSearchQuery(other, connector, self, self.config)
return CombinedSearchQuery(self, connector, other, self.config)
# On Combinable, these are not implemented to reduce confusion with Q. In
# this case we are actually (ab)using them to do logical combination so
# it's consistent with other usage in Django.
def __or__(self, other):
return self._combine(other, self.BITOR, False)
def __ror__(self, other):
return self._combine(other, self.BITOR, True)
def __and__(self, other):
return self._combine(other, self.BITAND, False)
def __rand__(self, other):
return self._combine(other, self.BITAND, True)
class SearchQuery(SearchQueryCombinable, Func):
output_field = SearchQueryField()
SEARCH_TYPES = {
'plain': 'plainto_tsquery',
'phrase': 'phraseto_tsquery',
'raw': 'to_tsquery',
'websearch': 'websearch_to_tsquery',
}
def __init__(self, value, output_field=None, *, config=None, invert=False, search_type='plain'):
self.function = self.SEARCH_TYPES.get(search_type)
if self.function is None:
raise ValueError("Unknown search_type argument '%s'." % search_type)
if not hasattr(value, 'resolve_expression'):
value = Value(value)
expressions = (value,)
self.config = SearchConfig.from_parameter(config)
if self.config is not None:
expressions = (self.config,) + expressions
self.invert = invert
super().__init__(*expressions, output_field=output_field)
def as_sql(self, compiler, connection, function=None, template=None):
sql, params = super().as_sql(compiler, connection, function, template)
if self.invert:
sql = '!!(%s)' % sql
return sql, params
def __invert__(self):
clone = self.copy()
clone.invert = not self.invert
return clone
def __str__(self):
result = super().__str__()
return ('~%s' % result) if self.invert else result
class CombinedSearchQuery(SearchQueryCombinable, CombinedExpression):
def __init__(self, lhs, connector, rhs, config, output_field=None):
self.config = config
super().__init__(lhs, connector, rhs, output_field)
def __str__(self):
return '(%s)' % super().__str__()
class SearchRank(Func):
function = 'ts_rank'
output_field = FloatField()
def __init__(
self, vector, query, weights=None, normalization=None,
cover_density=False,
):
if not hasattr(vector, 'resolve_expression'):
vector = SearchVector(vector)
if not hasattr(query, 'resolve_expression'):
query = SearchQuery(query)
expressions = (vector, query)
if weights is not None:
if not hasattr(weights, 'resolve_expression'):
weights = Value(weights)
expressions = (weights,) + expressions
if normalization is not None:
if not hasattr(normalization, 'resolve_expression'):
normalization = Value(normalization)
expressions += (normalization,)
if cover_density:
self.function = 'ts_rank_cd'
super().__init__(*expressions)
class SearchHeadline(Func):
function = 'ts_headline'
template = '%(function)s(%(expressions)s%(options)s)'
output_field = TextField()
def __init__(
self, expression, query, *, config=None, start_sel=None, stop_sel=None,
max_words=None, min_words=None, short_word=None, highlight_all=None,
max_fragments=None, fragment_delimiter=None,
):
if not hasattr(query, 'resolve_expression'):
query = SearchQuery(query)
options = {
'StartSel': start_sel,
'StopSel': stop_sel,
'MaxWords': max_words,
'MinWords': min_words,
'ShortWord': short_word,
'HighlightAll': highlight_all,
'MaxFragments': max_fragments,
'FragmentDelimiter': fragment_delimiter,
}
self.options = {
option: value
for option, value in options.items() if value is not None
}
expressions = (expression, query)
if config is not None:
config = SearchConfig.from_parameter(config)
expressions = (config,) + expressions
super().__init__(*expressions)
def as_sql(self, compiler, connection, function=None, template=None):
options_sql = ''
options_params = []
if self.options:
# getquoted() returns a quoted bytestring of the adapted value.
options_params.append(', '.join(
'%s=%s' % (
option,
psycopg2.extensions.adapt(value).getquoted().decode(),
) for option, value in self.options.items()
))
options_sql = ', %s'
sql, params = super().as_sql(
compiler, connection, function=function, template=template,
options=options_sql,
)
return sql, params + options_params
SearchVectorField.register_lookup(SearchVectorExact)
class TrigramBase(Func):
output_field = FloatField()
def __init__(self, expression, string, **extra):
if not hasattr(string, 'resolve_expression'):
string = Value(string)
super().__init__(expression, string, **extra)
class TrigramSimilarity(TrigramBase):
function = 'SIMILARITY'
class TrigramDistance(TrigramBase):
function = ''
arg_joiner = ' <-> '
|