Source code django/db/models/sql/query.py

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
"""
Create SQL statements for QuerySets.

The code in here encapsulates all of the SQL construction so that QuerySets
themselves do not have to (and could be backed by things other than SQL
databases). The abstraction barrier only works one way: this module has to know
all about the internals of models in order to get the information it needs.
"""
import copy
import difflib
import functools
import inspect
import sys
import warnings
from collections import Counter, namedtuple
from collections.abc import Iterator, Mapping
from itertools import chain, count, product
from string import ascii_uppercase

from django.core.exceptions import FieldDoesNotExist, FieldError
from django.db import DEFAULT_DB_ALIAS, NotSupportedError, connections
from django.db.models.aggregates import Count
from django.db.models.constants import LOOKUP_SEP
from django.db.models.expressions import (
    BaseExpression, Col, Exists, F, OuterRef, Ref, ResolvedOuterRef,
)
from django.db.models.fields import Field
from django.db.models.fields.related_lookups import MultiColSource
from django.db.models.lookups import Lookup
from django.db.models.query_utils import (
    Q, check_rel_lookup_compatibility, refs_expression,
)
from django.db.models.sql.constants import INNER, LOUTER, ORDER_DIR, SINGLE
from django.db.models.sql.datastructures import (
    BaseTable, Empty, Join, MultiJoin,
)
from django.db.models.sql.where import (
    AND, OR, ExtraWhere, NothingNode, WhereNode,
)
from django.utils.deprecation import RemovedInDjango40Warning
from django.utils.functional import cached_property
from django.utils.hashable import make_hashable
from django.utils.tree import Node

__all__ = ['Query', 'RawQuery']


def get_field_names_from_opts(opts):
    return set(chain.from_iterable(
        (f.name, f.attname) if f.concrete else (f.name,)
        for f in opts.get_fields()
    ))


def get_children_from_q(q):
    for child in q.children:
        if isinstance(child, Node):
            yield from get_children_from_q(child)
        else:
            yield child


JoinInfo = namedtuple(
    'JoinInfo',
    ('final_field', 'targets', 'opts', 'joins', 'path', 'transform_function')
)


class RawQuery:
    """A single raw SQL query."""

    def __init__(self, sql, using, params=None):
        self.params = params or ()
        self.sql = sql
        self.using = using
        self.cursor = None

        # Mirror some properties of a normal query so that
        # the compiler can be used to process results.
        self.low_mark, self.high_mark = 0, None  # Used for offset/limit
        self.extra_select = {}
        self.annotation_select = {}

    def chain(self, using):
        return self.clone(using)

    def clone(self, using):
        return RawQuery(self.sql, using, params=self.params)

    def get_columns(self):
        if self.cursor is None:
            self._execute_query()
        converter = connections[self.using].introspection.identifier_converter
        return [converter(column_meta[0])
                for column_meta in self.cursor.description]

    def __iter__(self):
        # Always execute a new query for a new iterator.
        # This could be optimized with a cache at the expense of RAM.
        self._execute_query()
        if not connections[self.using].features.can_use_chunked_reads:
            # If the database can't use chunked reads we need to make sure we
            # evaluate the entire query up front.
            result = list(self.cursor)
        else:
            result = self.cursor
        return iter(result)

    def __repr__(self):
        return "<%s: %s>" % (self.__class__.__name__, self)

    @property
    def params_type(self):
        return dict if isinstance(self.params, Mapping) else tuple

    def __str__(self):
        return self.sql % self.params_type(self.params)

    def _execute_query(self):
        connection = connections[self.using]

        # Adapt parameters to the database, as much as possible considering
        # that the target type isn't known. See #17755.
        params_type = self.params_type
        adapter = connection.ops.adapt_unknown_value
        if params_type is tuple:
            params = tuple(adapter(val) for val in self.params)
        elif params_type is dict:
            params = {key: adapter(val) for key, val in self.params.items()}
        else:
            raise RuntimeError("Unexpected params type: %s" % params_type)

        self.cursor = connection.cursor()
        self.cursor.execute(self.sql, params)


class Query(BaseExpression):
    """A single SQL query."""

    alias_prefix = 'T'
    subq_aliases = frozenset([alias_prefix])

    compiler = 'SQLCompiler'

    def __init__(self, model, where=WhereNode, alias_cols=True):
        self.model = model
        self.alias_refcount = {}
        # alias_map is the most important data structure regarding joins.
        # It's used for recording which joins exist in the query and what
        # types they are. The key is the alias of the joined table (possibly
        # the table name) and the value is a Join-like object (see
        # sql.datastructures.Join for more information).
        self.alias_map = {}
        # Whether to provide alias to columns during reference resolving.
        self.alias_cols = alias_cols
        # Sometimes the query contains references to aliases in outer queries (as
        # a result of split_exclude). Correct alias quoting needs to know these
        # aliases too.
        # Map external tables to whether they are aliased.
        self.external_aliases = {}
        self.table_map = {}     # Maps table names to list of aliases.
        self.default_cols = True
        self.default_ordering = True
        self.standard_ordering = True
        self.used_aliases = set()
        self.filter_is_sticky = False
        self.subquery = False

        # SQL-related attributes
        # Select and related select clauses are expressions to use in the
        # SELECT clause of the query.
        # The select is used for cases where we want to set up the select
        # clause to contain other than default fields (values(), subqueries...)
        # Note that annotations go to annotations dictionary.
        self.select = ()
        self.where = where()
        self.where_class = where
        # The group_by attribute can have one of the following forms:
        #  - None: no group by at all in the query
        #  - A tuple of expressions: group by (at least) those expressions.
        #    String refs are also allowed for now.
        #  - True: group by all select fields of the model
        # See compiler.get_group_by() for details.
        self.group_by = None
        self.order_by = ()
        self.low_mark, self.high_mark = 0, None  # Used for offset/limit
        self.distinct = False
        self.distinct_fields = ()
        self.select_for_update = False
        self.select_for_update_nowait = False
        self.select_for_update_skip_locked = False
        self.select_for_update_of = ()
        self.select_for_no_key_update = False

        self.select_related = False
        # Arbitrary limit for select_related to prevents infinite recursion.
        self.max_depth = 5

        # Holds the selects defined by a call to values() or values_list()
        # excluding annotation_select and extra_select.
        self.values_select = ()

        # SQL annotation-related attributes
        self.annotations = {}  # Maps alias -> Annotation Expression
        self.annotation_select_mask = None
        self._annotation_select_cache = None

        # Set combination attributes
        self.combinator = None
        self.combinator_all = False
        self.combined_queries = ()

        # These are for extensions. The contents are more or less appended
        # verbatim to the appropriate clause.
        self.extra = {}  # Maps col_alias -> (col_sql, params).
        self.extra_select_mask = None
        self._extra_select_cache = None

        self.extra_tables = ()
        self.extra_order_by = ()

        # A tuple that is a set of model field names and either True, if these
        # are the fields to defer, or False if these are the only fields to
        # load.
        self.deferred_loading = (frozenset(), True)

        self._filtered_relations = {}

        self.explain_query = False
        self.explain_format = None
        self.explain_options = {}

    @property
    def output_field(self):
        if len(self.select) == 1:
            select = self.select[0]
            return getattr(select, 'target', None) or select.field
        elif len(self.annotation_select) == 1:
            return next(iter(self.annotation_select.values())).output_field

    @property
    def has_select_fields(self):
        return bool(self.select or self.annotation_select_mask or self.extra_select_mask)

    @cached_property
    def base_table(self):
        for alias in self.alias_map:
            return alias

    @property
    def identity(self):
        identity = (
            (arg, make_hashable(value))
            for arg, value in self.__dict__.items()
        )
        return (self.__class__, *identity)

    def __str__(self):
        """
        Return the query as a string of SQL with the parameter values
        substituted in (use sql_with_params() to see the unsubstituted string).

        Parameter values won't necessarily be quoted correctly, since that is
        done by the database interface at execution time.
        """
        sql, params = self.sql_with_params()
        return sql % params

    def sql_with_params(self):
        """
        Return the query as an SQL string and the parameters that will be
        substituted into the query.
        """
        return self.get_compiler(DEFAULT_DB_ALIAS).as_sql()

    def __deepcopy__(self, memo):
        """Limit the amount of work when a Query is deepcopied."""
        result = self.clone()
        memo[id(self)] = result
        return result

    def get_compiler(self, using=None, connection=None):
        if using is None and connection is None:
            raise ValueError("Need either using or connection")
        if using:
            connection = connections[using]
        return connection.ops.compiler(self.compiler)(self, connection, using)

    def get_meta(self):
        """
        Return the Options instance (the model._meta) from which to start
        processing. Normally, this is self.model._meta, but it can be changed
        by subclasses.
        """
        return self.model._meta

    def clone(self):
        """
        Return a copy of the current Query. A lightweight alternative to
        to deepcopy().
        """
        obj = Empty()
        obj.__class__ = self.__class__
        # Copy references to everything.
        obj.__dict__ = self.__dict__.copy()
        # Clone attributes that can't use shallow copy.
        obj.alias_refcount = self.alias_refcount.copy()
        obj.alias_map = self.alias_map.copy()
        obj.external_aliases = self.external_aliases.copy()
        obj.table_map = self.table_map.copy()
        obj.where = self.where.clone()
        obj.annotations = self.annotations.copy()
        if self.annotation_select_mask is None:
            obj.annotation_select_mask = None
        else:
            obj.annotation_select_mask = self.annotation_select_mask.copy()
        obj.combined_queries = tuple(query.clone() for query in self.combined_queries)
        # _annotation_select_cache cannot be copied, as doing so breaks the
        # (necessary) state in which both annotations and
        # _annotation_select_cache point to the same underlying objects.
        # It will get re-populated in the cloned queryset the next time it's
        # used.
        obj._annotation_select_cache = None
        obj.extra = self.extra.copy()
        if self.extra_select_mask is None:
            obj.extra_select_mask = None
        else:
            obj.extra_select_mask = self.extra_select_mask.copy()
        if self._extra_select_cache is None:
            obj._extra_select_cache = None
        else:
            obj._extra_select_cache = self._extra_select_cache.copy()
        if self.select_related is not False:
            # Use deepcopy because select_related stores fields in nested
            # dicts.
            obj.select_related = copy.deepcopy(obj.select_related)
        if 'subq_aliases' in self.__dict__:
            obj.subq_aliases = self.subq_aliases.copy()
        obj.used_aliases = self.used_aliases.copy()
        obj._filtered_relations = self._filtered_relations.copy()
        # Clear the cached_property
        try:
            del obj.base_table
        except AttributeError:
            pass
        return obj

    def chain(self, klass=None):
        """
        Return a copy of the current Query that's ready for another operation.
        The klass argument changes the type of the Query, e.g. UpdateQuery.
        """
        obj = self.clone()
        if klass and obj.__class__ != klass:
            obj.__class__ = klass
        if not obj.filter_is_sticky:
            obj.used_aliases = set()
        obj.filter_is_sticky = False
        if hasattr(obj, '_setup_query'):
            obj._setup_query()
        return obj

    def relabeled_clone(self, change_map):
        clone = self.clone()
        clone.change_aliases(change_map)
        return clone

    def _get_col(self, target, field, alias):
        if not self.alias_cols:
            alias = None
        return target.get_col(alias, field)

    def rewrite_cols(self, annotation, col_cnt):
        # We must make sure the inner query has the referred columns in it.
        # If we are aggregating over an annotation, then Django uses Ref()
        # instances to note this. However, if we are annotating over a column
        # of a related model, then it might be that column isn't part of the
        # SELECT clause of the inner query, and we must manually make sure
        # the column is selected. An example case is:
        #    .aggregate(Sum('author__awards'))
        # Resolving this expression results in a join to author, but there
        # is no guarantee the awards column of author is in the select clause
        # of the query. Thus we must manually add the column to the inner
        # query.
        orig_exprs = annotation.get_source_expressions()
        new_exprs = []
        for expr in orig_exprs:
            # FIXME: These conditions are fairly arbitrary. Identify a better
            # method of having expressions decide which code path they should
            # take.
            if isinstance(expr, Ref):
                # Its already a Ref to subquery (see resolve_ref() for
                # details)
                new_exprs.append(expr)
            elif isinstance(expr, (WhereNode, Lookup)):
                # Decompose the subexpressions further. The code here is
                # copied from the else clause, but this condition must appear
                # before the contains_aggregate/is_summary condition below.
                new_expr, col_cnt = self.rewrite_cols(expr, col_cnt)
                new_exprs.append(new_expr)
            else:
                # Reuse aliases of expressions already selected in subquery.
                for col_alias, selected_annotation in self.annotation_select.items():
                    if selected_annotation is expr:
                        new_expr = Ref(col_alias, expr)
                        break
                else:
                    # An expression that is not selected the subquery.
                    if isinstance(expr, Col) or (expr.contains_aggregate and not expr.is_summary):
                        # Reference column or another aggregate. Select it
                        # under a non-conflicting alias.
                        col_cnt += 1
                        col_alias = '__col%d' % col_cnt
                        self.annotations[col_alias] = expr
                        self.append_annotation_mask([col_alias])
                        new_expr = Ref(col_alias, expr)
                    else:
                        # Some other expression not referencing database values
                        # directly. Its subexpression might contain Cols.
                        new_expr, col_cnt = self.rewrite_cols(expr, col_cnt)
                new_exprs.append(new_expr)
        annotation.set_source_expressions(new_exprs)
        return annotation, col_cnt

    def get_aggregation(self, using, added_aggregate_names):
        """
        Return the dictionary with the values of the existing aggregations.
        """
        if not self.annotation_select:
            return {}
        existing_annotations = [
            annotation for alias, annotation
            in self.annotations.items()
            if alias not in added_aggregate_names
        ]
        # Decide if we need to use a subquery.
        #
        # Existing annotations would cause incorrect results as get_aggregation()
        # must produce just one result and thus must not use GROUP BY. But we
        # aren't smart enough to remove the existing annotations from the
        # query, so those would force us to use GROUP BY.
        #
        # If the query has limit or distinct, or uses set operations, then
        # those operations must be done in a subquery so that the query
        # aggregates on the limit and/or distinct results instead of applying
        # the distinct and limit after the aggregation.
        if (isinstance(self.group_by, tuple) or self.is_sliced or existing_annotations or
                self.distinct or self.combinator):
            from django.db.models.sql.subqueries import AggregateQuery
            inner_query = self.clone()
            inner_query.subquery = True
            outer_query = AggregateQuery(self.model, inner_query)
            inner_query.select_for_update = False
            inner_query.select_related = False
            inner_query.set_annotation_mask(self.annotation_select)
            if not self.is_sliced and not self.distinct_fields:
                # Queries with distinct_fields need ordering and when a limit
                # is applied we must take the slice from the ordered query.
                # Otherwise no need for ordering.
                inner_query.clear_ordering(True)
            if not inner_query.distinct:
                # If the inner query uses default select and it has some
                # aggregate annotations, then we must make sure the inner
                # query is grouped by the main model's primary key. However,
                # clearing the select clause can alter results if distinct is
                # used.
                has_existing_aggregate_annotations = any(
                    annotation for annotation in existing_annotations
                    if getattr(annotation, 'contains_aggregate', True)
                )
                if inner_query.default_cols and has_existing_aggregate_annotations:
                    inner_query.group_by = (self.model._meta.pk.get_col(inner_query.get_initial_alias()),)
                inner_query.default_cols = False

            relabels = {t: 'subquery' for t in inner_query.alias_map}
            relabels[None] = 'subquery'
            # Remove any aggregates marked for reduction from the subquery
            # and move them to the outer AggregateQuery.
            col_cnt = 0
            for alias, expression in list(inner_query.annotation_select.items()):
                annotation_select_mask = inner_query.annotation_select_mask
                if expression.is_summary:
                    expression, col_cnt = inner_query.rewrite_cols(expression, col_cnt)
                    outer_query.annotations[alias] = expression.relabeled_clone(relabels)
                    del inner_query.annotations[alias]
                    annotation_select_mask.remove(alias)
                # Make sure the annotation_select wont use cached results.
                inner_query.set_annotation_mask(inner_query.annotation_select_mask)
            if inner_query.select == () and not inner_query.default_cols and not inner_query.annotation_select_mask:
                # In case of Model.objects[0:3].count(), there would be no
                # field selected in the inner query, yet we must use a subquery.
                # So, make sure at least one field is selected.
                inner_query.select = (self.model._meta.pk.get_col(inner_query.get_initial_alias()),)
        else:
            outer_query = self
            self.select = ()
            self.default_cols = False
            self.extra = {}

        outer_query.clear_ordering(True)
        outer_query.clear_limits()
        outer_query.select_for_update = False
        outer_query.select_related = False
        compiler = outer_query.get_compiler(using)
        result = compiler.execute_sql(SINGLE)
        if result is None:
            result = [None] * len(outer_query.annotation_select)

        converters = compiler.get_converters(outer_query.annotation_select.values())
        result = next(compiler.apply_converters((result,), converters))

        return dict(zip(outer_query.annotation_select, result))

    def get_count(self, using):
        """
        Perform a COUNT() query using the current filter constraints.
        """
        obj = self.clone()
        obj.add_annotation(Count('*'), alias='__count', is_summary=True)
        number = obj.get_aggregation(using, ['__count'])['__count']
        if number is None:
            number = 0
        return number

    def has_filters(self):
        return self.where

    def exists(self, using, limit=True):
        q = self.clone()
        if not q.distinct:
            if q.group_by is True:
                q.add_fields((f.attname for f in self.model._meta.concrete_fields), False)
                # Disable GROUP BY aliases to avoid orphaning references to the
                # SELECT clause which is about to be cleared.
                q.set_group_by(allow_aliases=False)
            q.clear_select_clause()
        if q.combined_queries and q.combinator == 'union':
            limit_combined = connections[using].features.supports_slicing_ordering_in_compound
            q.combined_queries = tuple(
                combined_query.exists(using, limit=limit_combined)
                for combined_query in q.combined_queries
            )
        q.clear_ordering(True)
        if limit:
            q.set_limits(high=1)
        q.add_extra({'a': 1}, None, None, None, None, None)
        q.set_extra_mask(['a'])
        return q

    def has_results(self, using):
        q = self.exists(using)
        compiler = q.get_compiler(using=using)
        return compiler.has_results()

    def explain(self, using, format=None, **options):
        q = self.clone()
        q.explain_query = True
        q.explain_format = format
        q.explain_options = options
        compiler = q.get_compiler(using=using)
        return '\n'.join(compiler.explain_query())

    def combine(self, rhs, connector):
        """
        Merge the 'rhs' query into the current one (with any 'rhs' effects
        being applied *after* (that is, "to the right of") anything in the
        current query. 'rhs' is not modified during a call to this function.

        The 'connector' parameter describes how to connect filters from the
        'rhs' query.
        """
        assert self.model == rhs.model, \
            "Cannot combine queries on two different base models."
        assert not self.is_sliced, \
            "Cannot combine queries once a slice has been taken."
        assert self.distinct == rhs.distinct, \
            "Cannot combine a unique query with a non-unique query."
        assert self.distinct_fields == rhs.distinct_fields, \
            "Cannot combine queries with different distinct fields."

        # Work out how to relabel the rhs aliases, if necessary.
        change_map = {}
        conjunction = (connector == AND)

        # Determine which existing joins can be reused. When combining the
        # query with AND we must recreate all joins for m2m filters. When
        # combining with OR we can reuse joins. The reason is that in AND
        # case a single row can't fulfill a condition like:
        #     revrel__col=1 & revrel__col=2
        # But, there might be two different related rows matching this
        # condition. In OR case a single True is enough, so single row is
        # enough, too.
        #
        # Note that we will be creating duplicate joins for non-m2m joins in
        # the AND case. The results will be correct but this creates too many
        # joins. This is something that could be fixed later on.
        reuse = set() if conjunction else set(self.alias_map)
        # Base table must be present in the query - this is the same
        # table on both sides.
        self.get_initial_alias()
        joinpromoter = JoinPromoter(connector, 2, False)
        joinpromoter.add_votes(
            j for j in self.alias_map if self.alias_map[j].join_type == INNER)
        rhs_votes = set()
        # Now, add the joins from rhs query into the new query (skipping base
        # table).
        rhs_tables = list(rhs.alias_map)[1:]
        for alias in rhs_tables:
            join = rhs.alias_map[alias]
            # If the left side of the join was already relabeled, use the
            # updated alias.
            join = join.relabeled_clone(change_map)
            new_alias = self.join(join, reuse=reuse)
            if join.join_type == INNER:
                rhs_votes.add(new_alias)
            # We can't reuse the same join again in the query. If we have two
            # distinct joins for the same connection in rhs query, then the
            # combined query must have two joins, too.
            reuse.discard(new_alias)
            if alias != new_alias:
                change_map[alias] = new_alias
            if not rhs.alias_refcount[alias]:
                # The alias was unused in the rhs query. Unref it so that it
                # will be unused in the new query, too. We have to add and
                # unref the alias so that join promotion has information of
                # the join type for the unused alias.
                self.unref_alias(new_alias)
        joinpromoter.add_votes(rhs_votes)
        joinpromoter.update_join_types(self)

        # Now relabel a copy of the rhs where-clause and add it to the current
        # one.
        w = rhs.where.clone()
        w.relabel_aliases(change_map)
        self.where.add(w, connector)

        # Selection columns and extra extensions are those provided by 'rhs'.
        if rhs.select:
            self.set_select([col.relabeled_clone(change_map) for col in rhs.select])
        else:
            self.select = ()

        if connector == OR:
            # It would be nice to be able to handle this, but the queries don't
            # really make sense (or return consistent value sets). Not worth
            # the extra complexity when you can write a real query instead.
            if self.extra and rhs.extra:
                raise ValueError("When merging querysets using 'or', you cannot have extra(select=...) on both sides.")
        self.extra.update(rhs.extra)
        extra_select_mask = set()
        if self.extra_select_mask is not None:
            extra_select_mask.update(self.extra_select_mask)
        if rhs.extra_select_mask is not None:
            extra_select_mask.update(rhs.extra_select_mask)
        if extra_select_mask:
            self.set_extra_mask(extra_select_mask)
        self.extra_tables += rhs.extra_tables

        # Ordering uses the 'rhs' ordering, unless it has none, in which case
        # the current ordering is used.
        self.order_by = rhs.order_by or self.order_by
        self.extra_order_by = rhs.extra_order_by or self.extra_order_by

    def deferred_to_data(self, target, callback):
        """
        Convert the self.deferred_loading data structure to an alternate data
        structure, describing the field that *will* be loaded. This is used to
        compute the columns to select from the database and also by the
        QuerySet class to work out which fields are being initialized on each
        model. Models that have all their fields included aren't mentioned in
        the result, only those that have field restrictions in place.

        The "target" parameter is the instance that is populated (in place).
        The "callback" is a function that is called whenever a (model, field)
        pair need to be added to "target". It accepts three parameters:
        "target", and the model and list of fields being added for that model.
        """
        field_names, defer = self.deferred_loading
        if not field_names:
            return
        orig_opts = self.get_meta()
        seen = {}
        must_include = {orig_opts.concrete_model: {orig_opts.pk}}
        for field_name in field_names:
            parts = field_name.split(LOOKUP_SEP)
            cur_model = self.model._meta.concrete_model
            opts = orig_opts
            for name in parts[:-1]:
                old_model = cur_model
                if name in self._filtered_relations:
                    name = self._filtered_relations[name].relation_name
                source = opts.get_field(name)
                if is_reverse_o2o(source):
                    cur_model = source.related_model
                else:
                    cur_model = source.remote_field.model
                opts = cur_model._meta
                # Even if we're "just passing through" this model, we must add
                # both the current model's pk and the related reference field
                # (if it's not a reverse relation) to the things we select.
                if not is_reverse_o2o(source):
                    must_include[old_model].add(source)
                add_to_dict(must_include, cur_model, opts.pk)
            field = opts.get_field(parts[-1])
            is_reverse_object = field.auto_created and not field.concrete
            model = field.related_model if is_reverse_object else field.model
            model = model._meta.concrete_model
            if model == opts.model:
                model = cur_model
            if not is_reverse_o2o(field):
                add_to_dict(seen, model, field)

        if defer:
            # We need to load all fields for each model, except those that
            # appear in "seen" (for all models that appear in "seen"). The only
            # slight complexity here is handling fields that exist on parent
            # models.
            workset = {}
            for model, values in seen.items():
                for field in model._meta.local_fields:
                    if field not in values:
                        m = field.model._meta.concrete_model
                        add_to_dict(workset, m, field)
            for model, values in must_include.items():
                # If we haven't included a model in workset, we don't add the
                # corresponding must_include fields for that model, since an
                # empty set means "include all fields". That's why there's no
                # "else" branch here.
                if model in workset:
                    workset[model].update(values)
            for model, values in workset.items():
                callback(target, model, values)
        else:
            for model, values in must_include.items():
                if model in seen:
                    seen[model].update(values)
                else:
                    # As we've passed through this model, but not explicitly
                    # included any fields, we have to make sure it's mentioned
                    # so that only the "must include" fields are pulled in.
                    seen[model] = values
            # Now ensure that every model in the inheritance chain is mentioned
            # in the parent list. Again, it must be mentioned to ensure that
            # only "must include" fields are pulled in.
            for model in orig_opts.get_parent_list():
                seen.setdefault(model, set())
            for model, values in seen.items():
                callback(target, model, values)

    def table_alias(self, table_name, create=False, filtered_relation=None):
        """
        Return a table alias for the given table_name and whether this is a
        new alias or not.

        If 'create' is true, a new alias is always created. Otherwise, the
        most recently created alias for the table (if one exists) is reused.
        """
        alias_list = self.table_map.get(table_name)
        if not create and alias_list:
            alias = alias_list[0]
            self.alias_refcount[alias] += 1
            return alias, False

        # Create a new alias for this table.
        if alias_list:
            alias = '%s%d' % (self.alias_prefix, len(self.alias_map) + 1)
            alias_list.append(alias)
        else:
            # The first occurrence of a table uses the table name directly.
            alias = filtered_relation.alias if filtered_relation is not None else table_name
            self.table_map[table_name] = [alias]
        self.alias_refcount[alias] = 1
        return alias, True

    def ref_alias(self, alias):
        """Increases the reference count for this alias."""
        self.alias_refcount[alias] += 1

    def unref_alias(self, alias, amount=1):
        """Decreases the reference count for this alias."""
        self.alias_refcount[alias] -= amount

    def promote_joins(self, aliases):
        """
        Promote recursively the join type of given aliases and its children to
        an outer join. If 'unconditional' is False, only promote the join if
        it is nullable or the parent join is an outer join.

        The children promotion is done to avoid join chains that contain a LOUTER
        b INNER c. So, if we have currently a INNER b INNER c and a->b is promoted,
        then we must also promote b->c automatically, or otherwise the promotion
        of a->b doesn't actually change anything in the query results.
        """
        aliases = list(aliases)
        while aliases:
            alias = aliases.pop(0)
            if self.alias_map[alias].join_type is None:
                # This is the base table (first FROM entry) - this table
                # isn't really joined at all in the query, so we should not
                # alter its join type.
                continue
            # Only the first alias (skipped above) should have None join_type
            assert self.alias_map[alias].join_type is not None
            parent_alias = self.alias_map[alias].parent_alias
            parent_louter = parent_alias and self.alias_map[parent_alias].join_type == LOUTER
            already_louter = self.alias_map[alias].join_type == LOUTER
            if ((self.alias_map[alias].nullable or parent_louter) and
                    not already_louter):
                self.alias_map[alias] = self.alias_map[alias].promote()
                # Join type of 'alias' changed, so re-examine all aliases that
                # refer to this one.
                aliases.extend(
                    join for join in self.alias_map
                    if self.alias_map[join].parent_alias == alias and join not in aliases
                )

    def demote_joins(self, aliases):
        """
        Change join type from LOUTER to INNER for all joins in aliases.

        Similarly to promote_joins(), this method must ensure no join chains
        containing first an outer, then an inner join are generated. If we
        are demoting b->c join in chain a LOUTER b LOUTER c then we must
        demote a->b automatically, or otherwise the demotion of b->c doesn't
        actually change anything in the query results. .
        """
        aliases = list(aliases)
        while aliases:
            alias = aliases.pop(0)
            if self.alias_map[alias].join_type == LOUTER:
                self.alias_map[alias] = self.alias_map[alias].demote()
                parent_alias = self.alias_map[alias].parent_alias
                if self.alias_map[parent_alias].join_type == INNER:
                    aliases.append(parent_alias)

    def reset_refcounts(self, to_counts):
        """
        Reset reference counts for aliases so that they match the value passed
        in `to_counts`.
        """
        for alias, cur_refcount in self.alias_refcount.copy().items():
            unref_amount = cur_refcount - to_counts.get(alias, 0)
            self.unref_alias(alias, unref_amount)

    def change_aliases(self, change_map):
        """
        Change the aliases in change_map (which maps old-alias -> new-alias),
        relabelling any references to them in select columns and the where
        clause.
        """
        assert set(change_map).isdisjoint(change_map.values())

        # 1. Update references in "select" (normal columns plus aliases),
        # "group by" and "where".
        self.where.relabel_aliases(change_map)
        if isinstance(self.group_by, tuple):
            self.group_by = tuple([col.relabeled_clone(change_map) for col in self.group_by])
        self.select = tuple([col.relabeled_clone(change_map) for col in self.select])
        self.annotations = self.annotations and {
            key: col.relabeled_clone(change_map) for key, col in self.annotations.items()
        }

        # 2. Rename the alias in the internal table/alias datastructures.
        for old_alias, new_alias in change_map.items():
            if old_alias not in self.alias_map:
                continue
            alias_data = self.alias_map[old_alias].relabeled_clone(change_map)
            self.alias_map[new_alias] = alias_data
            self.alias_refcount[new_alias] = self.alias_refcount[old_alias]
            del self.alias_refcount[old_alias]
            del self.alias_map[old_alias]

            table_aliases = self.table_map[alias_data.table_name]
            for pos, alias in enumerate(table_aliases):
                if alias == old_alias:
                    table_aliases[pos] = new_alias
                    break
        self.external_aliases = {
            # Table is aliased or it's being changed and thus is aliased.
            change_map.get(alias, alias): (aliased or alias in change_map)
            for alias, aliased in self.external_aliases.items()
        }

    def bump_prefix(self, outer_query):
        """
        Change the alias prefix to the next letter in the alphabet in a way
        that the outer query's aliases and this query's aliases will not
        conflict. Even tables that previously had no alias will get an alias
        after this call.
        """
        def prefix_gen():
            """
            Generate a sequence of characters in alphabetical order:
                -> 'A', 'B', 'C', ...

            When the alphabet is finished, the sequence will continue with the
            Cartesian product:
                -> 'AA', 'AB', 'AC', ...
            """
            alphabet = ascii_uppercase
            prefix = chr(ord(self.alias_prefix) + 1)
            yield prefix
            for n in count(1):
                seq = alphabet[alphabet.index(prefix):] if prefix else alphabet
                for s in product(seq, repeat=n):
                    yield ''.join(s)
                prefix = None

        if self.alias_prefix != outer_query.alias_prefix:
            # No clashes between self and outer query should be possible.
            return

        # Explicitly avoid infinite loop. The constant divider is based on how
        # much depth recursive subquery references add to the stack. This value
        # might need to be adjusted when adding or removing function calls from
        # the code path in charge of performing these operations.
        local_recursion_limit = sys.getrecursionlimit() // 16
        for pos, prefix in enumerate(prefix_gen()):
            if prefix not in self.subq_aliases:
                self.alias_prefix = prefix
                break
            if pos > local_recursion_limit:
                raise RecursionError(
                    'Maximum recursion depth exceeded: too many subqueries.'
                )
        self.subq_aliases = self.subq_aliases.union([self.alias_prefix])
        outer_query.subq_aliases = outer_query.subq_aliases.union(self.subq_aliases)
        self.change_aliases({
            alias: '%s%d' % (self.alias_prefix, pos)
            for pos, alias in enumerate(self.alias_map)
        })

    def get_initial_alias(self):
        """
        Return the first alias for this query, after increasing its reference
        count.
        """
        if self.alias_map:
            alias = self.base_table
            self.ref_alias(alias)
        else:
            alias = self.join(BaseTable(self.get_meta().db_table, None))
        return alias

    def count_active_tables(self):
        """
        Return the number of tables in this query with a non-zero reference
        count. After execution, the reference counts are zeroed, so tables
        added in compiler will not be seen by this method.
        """
        return len([1 for count in self.alias_refcount.values() if count])

    def join(self, join, reuse=None, reuse_with_filtered_relation=False):
        """
        Return an alias for the 'join', either reusing an existing alias for
        that join or creating a new one. 'join' is either a
        sql.datastructures.BaseTable or Join.

        The 'reuse' parameter can be either None which means all joins are
        reusable, or it can be a set containing the aliases that can be reused.

        The 'reuse_with_filtered_relation' parameter is used when computing
        FilteredRelation instances.

        A join is always created as LOUTER if the lhs alias is LOUTER to make
        sure chains like t1 LOUTER t2 INNER t3 aren't generated. All new
        joins are created as LOUTER if the join is nullable.
        """
        if reuse_with_filtered_relation and reuse:
            reuse_aliases = [
                a for a, j in self.alias_map.items()
                if a in reuse and j.equals(join, with_filtered_relation=False)
            ]
        else:
            reuse_aliases = [
                a for a, j in self.alias_map.items()
                if (reuse is None or a in reuse) and j == join
            ]
        if reuse_aliases:
            if join.table_alias in reuse_aliases:
                reuse_alias = join.table_alias
            else:
                # Reuse the most recent alias of the joined table
                # (a many-to-many relation may be joined multiple times).
                reuse_alias = reuse_aliases[-1]
            self.ref_alias(reuse_alias)
            return reuse_alias

        # No reuse is possible, so we need a new alias.
        alias, _ = self.table_alias(join.table_name, create=True, filtered_relation=join.filtered_relation)
        if join.join_type:
            if self.alias_map[join.parent_alias].join_type == LOUTER or join.nullable:
                join_type = LOUTER
            else:
                join_type = INNER
            join.join_type = join_type
        join.table_alias = alias
        self.alias_map[alias] = join
        return alias

    def join_parent_model(self, opts, model, alias, seen):
        """
        Make sure the given 'model' is joined in the query. If 'model' isn't
        a parent of 'opts' or if it is None this method is a no-op.

        The 'alias' is the root alias for starting the join, 'seen' is a dict
        of model -> alias of existing joins. It must also contain a mapping
        of None -> some alias. This will be returned in the no-op case.
        """
        if model in seen:
            return seen[model]
        chain = opts.get_base_chain(model)
        if not chain:
            return alias
        curr_opts = opts
        for int_model in chain:
            if int_model in seen:
                curr_opts = int_model._meta
                alias = seen[int_model]
                continue
            # Proxy model have elements in base chain
            # with no parents, assign the new options
            # object and skip to the next base in that
            # case
            if not curr_opts.parents[int_model]:
                curr_opts = int_model._meta
                continue
            link_field = curr_opts.get_ancestor_link(int_model)
            join_info = self.setup_joins([link_field.name], curr_opts, alias)
            curr_opts = int_model._meta
            alias = seen[int_model] = join_info.joins[-1]
        return alias or seen[None]

    def add_annotation(self, annotation, alias, is_summary=False, select=True):
        """Add a single annotation expression to the Query."""
        annotation = annotation.resolve_expression(self, allow_joins=True, reuse=None,
                                                   summarize=is_summary)
        if select:
            self.append_annotation_mask([alias])
        else:
            self.set_annotation_mask(set(self.annotation_select).difference({alias}))
        self.annotations[alias] = annotation

    def resolve_expression(self, query, *args, **kwargs):
        clone = self.clone()
        # Subqueries need to use a different set of aliases than the outer query.
        clone.bump_prefix(query)
        clone.subquery = True
        # It's safe to drop ordering if the queryset isn't using slicing,
        # distinct(*fields) or select_for_update().
        if (self.low_mark == 0 and self.high_mark is None and
                not self.distinct_fields and
                not self.select_for_update):
            clone.clear_ordering(True)
        clone.where.resolve_expression(query, *args, **kwargs)
        for key, value in clone.annotations.items():
            resolved = value.resolve_expression(query, *args, **kwargs)
            if hasattr(resolved, 'external_aliases'):
                resolved.external_aliases.update(clone.external_aliases)
            clone.annotations[key] = resolved
        # Outer query's aliases are considered external.
        for alias, table in query.alias_map.items():
            clone.external_aliases[alias] = (
                (isinstance(table, Join) and table.join_field.related_model._meta.db_table != alias) or
                (isinstance(table, BaseTable) and table.table_name != table.table_alias)
            )
        return clone

    def get_external_cols(self):
        exprs = chain(self.annotations.values(), self.where.children)
        return [
            col for col in self._gen_cols(exprs)
            if col.alias in self.external_aliases
        ]

    def as_sql(self, compiler, connection):
        sql, params = self.get_compiler(connection=connection).as_sql()
        if self.subquery:
            sql = '(%s)' % sql
        return sql, params

    def resolve_lookup_value(self, value, can_reuse, allow_joins):
        if hasattr(value, 'resolve_expression'):
            value = value.resolve_expression(
                self, reuse=can_reuse, allow_joins=allow_joins,
            )
        elif isinstance(value, (list, tuple)):
            # The items of the iterable may be expressions and therefore need
            # to be resolved independently.
            values = (
                self.resolve_lookup_value(sub_value, can_reuse, allow_joins)
                for sub_value in value
            )
            type_ = type(value)
            if hasattr(type_, '_make'):  # namedtuple
                return type_(*values)
            return type_(values)
        return value

    def solve_lookup_type(self, lookup):
        """
        Solve the lookup type from the lookup (e.g.: 'foobar__id__icontains').
        """
        lookup_splitted = lookup.split(LOOKUP_SEP)
        if self.annotations:
            expression, expression_lookups = refs_expression(lookup_splitted, self.annotations)
            if expression:
                return expression_lookups, (), expression
        _, field, _, lookup_parts = self.names_to_path(lookup_splitted, self.get_meta())
        field_parts = lookup_splitted[0:len(lookup_splitted) - len(lookup_parts)]
        if len(lookup_parts) > 1 and not field_parts:
            raise FieldError(
                'Invalid lookup "%s" for model %s".' %
                (lookup, self.get_meta().model.__name__)
            )
        return lookup_parts, field_parts, False

    def check_query_object_type(self, value, opts, field):
        """
        Check whether the object passed while querying is of the correct type.
        If not, raise a ValueError specifying the wrong object.
        """
        if hasattr(value, '_meta'):
            if not check_rel_lookup_compatibility(value._meta.model, opts, field):
                raise ValueError(
                    'Cannot query "%s": Must be "%s" instance.' %
                    (value, opts.object_name))

    def check_related_objects(self, field, value, opts):
        """Check the type of object passed to query relations."""
        if field.is_relation:
            # Check that the field and the queryset use the same model in a
            # query like .filter(author=Author.objects.all()). For example, the
            # opts would be Author's (from the author field) and value.model
            # would be Author.objects.all() queryset's .model (Author also).
            # The field is the related field on the lhs side.
            if (isinstance(value, Query) and not value.has_select_fields and
                    not check_rel_lookup_compatibility(value.model, opts, field)):
                raise ValueError(
                    'Cannot use QuerySet for "%s": Use a QuerySet for "%s".' %
                    (value.model._meta.object_name, opts.object_name)
                )
            elif hasattr(value, '_meta'):
                self.check_query_object_type(value, opts, field)
            elif hasattr(value, '__iter__'):
                for v in value:
                    self.check_query_object_type(v, opts, field)

    def check_filterable(self, expression):
        """Raise an error if expression cannot be used in a WHERE clause."""
        if (
            hasattr(expression, 'resolve_expression') and
            not getattr(expression, 'filterable', True)
        ):
            raise NotSupportedError(
                expression.__class__.__name__ + ' is disallowed in the filter '
                'clause.'
            )
        if hasattr(expression, 'get_source_expressions'):
            for expr in expression.get_source_expressions():
                self.check_filterable(expr)

    def build_lookup(self, lookups, lhs, rhs):
        """
        Try to extract transforms and lookup from given lhs.

        The lhs value is something that works like SQLExpression.
        The rhs value is what the lookup is going to compare against.
        The lookups is a list of names to extract using get_lookup()
        and get_transform().
        """
        # __exact is the default lookup if one isn't given.
        *transforms, lookup_name = lookups or ['exact']
        for name in transforms:
            lhs = self.try_transform(lhs, name)
        # First try get_lookup() so that the lookup takes precedence if the lhs
        # supports both transform and lookup for the name.
        lookup_class = lhs.get_lookup(lookup_name)
        if not lookup_class:
            if lhs.field.is_relation:
                raise FieldError('Related Field got invalid lookup: {}'.format(lookup_name))
            # A lookup wasn't found. Try to interpret the name as a transform
            # and do an Exact lookup against it.
            lhs = self.try_transform(lhs, lookup_name)
            lookup_name = 'exact'
            lookup_class = lhs.get_lookup(lookup_name)
            if not lookup_class:
                return

        lookup = lookup_class(lhs, rhs)
        # Interpret '__exact=None' as the sql 'is NULL'; otherwise, reject all
        # uses of None as a query value unless the lookup supports it.
        if lookup.rhs is None and not lookup.can_use_none_as_rhs:
            if lookup_name not in ('exact', 'iexact'):
                raise ValueError("Cannot use None as a query value")
            return lhs.get_lookup('isnull')(lhs, True)

        # For Oracle '' is equivalent to null. The check must be done at this
        # stage because join promotion can't be done in the compiler. Using
        # DEFAULT_DB_ALIAS isn't nice but it's the best that can be done here.
        # A similar thing is done in is_nullable(), too.
        if (connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls and
                lookup_name == 'exact' and lookup.rhs == ''):
            return lhs.get_lookup('isnull')(lhs, True)

        return lookup

    def try_transform(self, lhs, name):
        """
        Helper method for build_lookup(). Try to fetch and initialize
        a transform for name parameter from lhs.
        """
        transform_class = lhs.get_transform(name)
        if transform_class:
            return transform_class(lhs)
        else:
            output_field = lhs.output_field.__class__
            suggested_lookups = difflib.get_close_matches(name, output_field.get_lookups())
            if suggested_lookups:
                suggestion = ', perhaps you meant %s?' % ' or '.join(suggested_lookups)
            else:
                suggestion = '.'
            raise FieldError(
                "Unsupported lookup '%s' for %s or join on the field not "
                "permitted%s" % (name, output_field.__name__, suggestion)
            )

    def build_filter(self, filter_expr, branch_negated=False, current_negated=False,
                     can_reuse=None, allow_joins=True, split_subq=True,
                     reuse_with_filtered_relation=False, check_filterable=True):
        """
        Build a WhereNode for a single filter clause but don't add it
        to this Query. Query.add_q() will then add this filter to the where
        Node.

        The 'branch_negated' tells us if the current branch contains any
        negations. This will be used to determine if subqueries are needed.

        The 'current_negated' is used to determine if the current filter is
        negated or not and this will be used to determine if IS NULL filtering
        is needed.

        The difference between current_negated and branch_negated is that
        branch_negated is set on first negation, but current_negated is
        flipped for each negation.

        Note that add_filter will not do any negating itself, that is done
        upper in the code by add_q().

        The 'can_reuse' is a set of reusable joins for multijoins.

        If 'reuse_with_filtered_relation' is True, then only joins in can_reuse
        will be reused.

        The method will create a filter clause that can be added to the current
        query. However, if the filter isn't added to the query then the caller
        is responsible for unreffing the joins used.
        """
        if isinstance(filter_expr, dict):
            raise FieldError("Cannot parse keyword query as dict")
        if isinstance(filter_expr, Q):
            return self._add_q(
                filter_expr,
                branch_negated=branch_negated,
                current_negated=current_negated,
                used_aliases=can_reuse,
                allow_joins=allow_joins,
                split_subq=split_subq,
                check_filterable=check_filterable,
            )
        if hasattr(filter_expr, 'resolve_expression'):
            if not getattr(filter_expr, 'conditional', False):
                raise TypeError('Cannot filter against a non-conditional expression.')
            condition = self.build_lookup(
                ['exact'], filter_expr.resolve_expression(self, allow_joins=allow_joins), True
            )
            clause = self.where_class()
            clause.add(condition, AND)
            return clause, []
        arg, value = filter_expr
        if not arg:
            raise FieldError("Cannot parse keyword query %r" % arg)
        lookups, parts, reffed_expression = self.solve_lookup_type(arg)

        if check_filterable:
            self.check_filterable(reffed_expression)

        if not allow_joins and len(parts) > 1:
            raise FieldError("Joined field references are not permitted in this query")

        pre_joins = self.alias_refcount.copy()
        value = self.resolve_lookup_value(value, can_reuse, allow_joins)
        used_joins = {k for k, v in self.alias_refcount.items() if v > pre_joins.get(k, 0)}

        if check_filterable:
            self.check_filterable(value)

        clause = self.where_class()
        if reffed_expression:
            condition = self.build_lookup(lookups, reffed_expression, value)
            clause.add(condition, AND)
            return clause, []

        opts = self.get_meta()
        alias = self.get_initial_alias()
        allow_many = not branch_negated or not split_subq

        try:
            join_info = self.setup_joins(
                parts, opts, alias, can_reuse=can_reuse, allow_many=allow_many,
                reuse_with_filtered_relation=reuse_with_filtered_relation,
            )

            # Prevent iterator from being consumed by check_related_objects()
            if isinstance(value, Iterator):
                value = list(value)
            self.check_related_objects(join_info.final_field, value, join_info.opts)

            # split_exclude() needs to know which joins were generated for the
            # lookup parts
            self._lookup_joins = join_info.joins
        except MultiJoin as e:
            return self.split_exclude(filter_expr, can_reuse, e.names_with_path)

        # Update used_joins before trimming since they are reused to determine
        # which joins could be later promoted to INNER.
        used_joins.update(join_info.joins)
        targets, alias, join_list = self.trim_joins(join_info.targets, join_info.joins, join_info.path)
        if can_reuse is not None:
            can_reuse.update(join_list)

        if join_info.final_field.is_relation:
            # No support for transforms for relational fields
            num_lookups = len(lookups)
            if num_lookups > 1:
                raise FieldError('Related Field got invalid lookup: {}'.format(lookups[0]))
            if len(targets) == 1:
                col = self._get_col(targets[0], join_info.final_field, alias)
            else:
                col = MultiColSource(alias, targets, join_info.targets, join_info.final_field)
        else:
            col = self._get_col(targets[0], join_info.final_field, alias)

        condition = self.build_lookup(lookups, col, value)
        lookup_type = condition.lookup_name
        clause.add(condition, AND)

        require_outer = lookup_type == 'isnull' and condition.rhs is True and not current_negated
        if current_negated and (lookup_type != 'isnull' or condition.rhs is False) and condition.rhs is not None:
            require_outer = True
            if lookup_type != 'isnull':
                # The condition added here will be SQL like this:
                # NOT (col IS NOT NULL), where the first NOT is added in
                # upper layers of code. The reason for addition is that if col
                # is null, then col != someval will result in SQL "unknown"
                # which isn't the same as in Python. The Python None handling
                # is wanted, and it can be gotten by
                # (col IS NULL OR col != someval)
                #   <=>
                # NOT (col IS NOT NULL AND col = someval).
                if (
                    self.is_nullable(targets[0]) or
                    self.alias_map[join_list[-1]].join_type == LOUTER
                ):
                    lookup_class = targets[0].get_lookup('isnull')
                    col = self._get_col(targets[0], join_info.targets[0], alias)
                    clause.add(lookup_class(col, False), AND)
                # If someval is a nullable column, someval IS NOT NULL is
                # added.
                if isinstance(value, Col) and self.is_nullable(value.target):
                    lookup_class = value.target.get_lookup('isnull')
                    clause.add(lookup_class(value, False), AND)
        return clause, used_joins if not require_outer else ()

    def add_filter(self, filter_clause):
        self.add_q(Q(**{filter_clause[0]: filter_clause[1]}))

    def add_q(self, q_object):
        """
        A preprocessor for the internal _add_q(). Responsible for doing final
        join promotion.
        """
        # For join promotion this case is doing an AND for the added q_object
        # and existing conditions. So, any existing inner join forces the join
        # type to remain inner. Existing outer joins can however be demoted.
        # (Consider case where rel_a is LOUTER and rel_a__col=1 is added - if
        # rel_a doesn't produce any rows, then the whole condition must fail.
        # So, demotion is OK.
        existing_inner = {a for a in self.alias_map if self.alias_map[a].join_type == INNER}
        clause, _ = self._add_q(q_object, self.used_aliases)
        if clause:
            self.where.add(clause, AND)
        self.demote_joins(existing_inner)

    def build_where(self, filter_expr):
        return self.build_filter(filter_expr, allow_joins=False)[0]

    def _add_q(self, q_object, used_aliases, branch_negated=False,
               current_negated=False, allow_joins=True, split_subq=True,
               check_filterable=True):
        """Add a Q-object to the current filter."""
        connector = q_object.connector
        current_negated = current_negated ^ q_object.negated
        branch_negated = branch_negated or q_object.negated
        target_clause = self.where_class(connector=connector,
                                         negated=q_object.negated)
        joinpromoter = JoinPromoter(q_object.connector, len(q_object.children), current_negated)
        for child in q_object.children:
            child_clause, needed_inner = self.build_filter(
                child, can_reuse=used_aliases, branch_negated=branch_negated,
                current_negated=current_negated, allow_joins=allow_joins,
                split_subq=split_subq, check_filterable=check_filterable,
            )
            joinpromoter.add_votes(needed_inner)
            if child_clause:
                target_clause.add(child_clause, connector)
        needed_inner = joinpromoter.update_join_types(self)
        return target_clause, needed_inner

    def build_filtered_relation_q(self, q_object, reuse, branch_negated=False, current_negated=False):
        """Add a FilteredRelation object to the current filter."""
        connector = q_object.connector
        current_negated ^= q_object.negated
        branch_negated = branch_negated or q_object.negated
        target_clause = self.where_class(connector=connector, negated=q_object.negated)
        for child in q_object.children:
            if isinstance(child, Node):
                child_clause = self.build_filtered_relation_q(
                    child, reuse=reuse, branch_negated=branch_negated,
                    current_negated=current_negated,
                )
            else:
                child_clause, _ = self.build_filter(
                    child, can_reuse=reuse, branch_negated=branch_negated,
                    current_negated=current_negated,
                    allow_joins=True, split_subq=False,
                    reuse_with_filtered_relation=True,
                )
            target_clause.add(child_clause, connector)
        return target_clause

    def add_filtered_relation(self, filtered_relation, alias):
        filtered_relation.alias = alias
        lookups = dict(get_children_from_q(filtered_relation.condition))
        relation_lookup_parts, relation_field_parts, _ = self.solve_lookup_type(filtered_relation.relation_name)
        if relation_lookup_parts:
            raise ValueError(
                "FilteredRelation's relation_name cannot contain lookups "
                "(got %r)." % filtered_relation.relation_name
            )
        for lookup in chain(lookups):
            lookup_parts, lookup_field_parts, _ = self.solve_lookup_type(lookup)
            shift = 2 if not lookup_parts else 1
            lookup_field_path = lookup_field_parts[:-shift]
            for idx, lookup_field_part in enumerate(lookup_field_path):
                if len(relation_field_parts) > idx:
                    if relation_field_parts[idx] != lookup_field_part:
                        raise ValueError(
                            "FilteredRelation's condition doesn't support "
                            "relations outside the %r (got %r)."
                            % (filtered_relation.relation_name, lookup)
                        )
                else:
                    raise ValueError(
                        "FilteredRelation's condition doesn't support nested "
                        "relations deeper than the relation_name (got %r for "
                        "%r)." % (lookup, filtered_relation.relation_name)
                    )
        self._filtered_relations[filtered_relation.alias] = filtered_relation

    def names_to_path(self, names, opts, allow_many=True, fail_on_missing=False):
        """
        Walk the list of names and turns them into PathInfo tuples. A single
        name in 'names' can generate multiple PathInfos (m2m, for example).

        'names' is the path of names to travel, 'opts' is the model Options we
        start the name resolving from, 'allow_many' is as for setup_joins().
        If fail_on_missing is set to True, then a name that can't be resolved
        will generate a FieldError.

        Return a list of PathInfo tuples. In addition return the final field
        (the last used join field) and target (which is a field guaranteed to
        contain the same value as the final field). Finally, return those names
        that weren't found (which are likely transforms and the final lookup).
        """
        path, names_with_path = [], []
        for pos, name in enumerate(names):
            cur_names_with_path = (name, [])
            if name == 'pk':
                name = opts.pk.name

            field = None
            filtered_relation = None
            try:
                field = opts.get_field(name)
            except FieldDoesNotExist:
                if name in self.annotation_select:
                    field = self.annotation_select[name].output_field
                elif name in self._filtered_relations and pos == 0:
                    filtered_relation = self._filtered_relations[name]
                    if LOOKUP_SEP in filtered_relation.relation_name:
                        parts = filtered_relation.relation_name.split(LOOKUP_SEP)
                        filtered_relation_path, field, _, _ = self.names_to_path(
                            parts, opts, allow_many, fail_on_missing,
                        )
                        path.extend(filtered_relation_path[:-1])
                    else:
                        field = opts.get_field(filtered_relation.relation_name)
            if field is not None:
                # Fields that contain one-to-many relations with a generic
                # model (like a GenericForeignKey) cannot generate reverse
                # relations and therefore cannot be used for reverse querying.
                if field.is_relation and not field.related_model:
                    raise FieldError(
                        "Field %r does not generate an automatic reverse "
                        "relation and therefore cannot be used for reverse "
                        "querying. If it is a GenericForeignKey, consider "
                        "adding a GenericRelation." % name
                    )
                try:
                    model = field.model._meta.concrete_model
                except AttributeError:
                    # QuerySet.annotate() may introduce fields that aren't
                    # attached to a model.
                    model = None
            else:
                # We didn't find the current field, so move position back
                # one step.
                pos -= 1
                if pos == -1 or fail_on_missing:
                    available = sorted([
                        *get_field_names_from_opts(opts),
                        *self.annotation_select,
                        *self._filtered_relations,
                    ])
                    raise FieldError("Cannot resolve keyword '%s' into field. "
                                     "Choices are: %s" % (name, ", ".join(available)))
                break
            # Check if we need any joins for concrete inheritance cases (the
            # field lives in parent, but we are currently in one of its
            # children)
            if model is not opts.model:
                path_to_parent = opts.get_path_to_parent(model)
                if path_to_parent:
                    path.extend(path_to_parent)
                    cur_names_with_path[1].extend(path_to_parent)
                    opts = path_to_parent[-1].to_opts
            if hasattr(field, 'get_path_info'):
                pathinfos = field.get_path_info(filtered_relation)
                if not allow_many:
                    for inner_pos, p in enumerate(pathinfos):
                        if p.m2m:
                            cur_names_with_path[1].extend(pathinfos[0:inner_pos + 1])
                            names_with_path.append(cur_names_with_path)
                            raise MultiJoin(pos + 1, names_with_path)
                last = pathinfos[-1]
                path.extend(pathinfos)
                final_field = last.join_field
                opts = last.to_opts
                targets = last.target_fields
                cur_names_with_path[1].extend(pathinfos)
                names_with_path.append(cur_names_with_path)
            else:
                # Local non-relational field.
                final_field = field
                targets = (field,)
                if fail_on_missing and pos + 1 != len(names):
                    raise FieldError(
                        "Cannot resolve keyword %r into field. Join on '%s'"
                        " not permitted." % (names[pos + 1], name))
                break
        return path, final_field, targets, names[pos + 1:]

    def setup_joins(self, names, opts, alias, can_reuse=None, allow_many=True,
                    reuse_with_filtered_relation=False):
        """
        Compute the necessary table joins for the passage through the fields
        given in 'names'. 'opts' is the Options class for the current model
        (which gives the table we are starting from), 'alias' is the alias for
        the table to start the joining from.

        The 'can_reuse' defines the reverse foreign key joins we can reuse. It
        can be None in which case all joins are reusable or a set of aliases
        that can be reused. Note that non-reverse foreign keys are always
        reusable when using setup_joins().

        The 'reuse_with_filtered_relation' can be used to force 'can_reuse'
        parameter and force the relation on the given connections.

        If 'allow_many' is False, then any reverse foreign key seen will
        generate a MultiJoin exception.

        Return the final field involved in the joins, the target field (used
        for any 'where' constraint), the final 'opts' value, the joins, the
        field path traveled to generate the joins, and a transform function
        that takes a field and alias and is equivalent to `field.get_col(alias)`
        in the simple case but wraps field transforms if they were included in
        names.

        The target field is the field containing the concrete value. Final
        field can be something different, for example foreign key pointing to
        that value. Final field is needed for example in some value
        conversions (convert 'obj' in fk__id=obj to pk val using the foreign
        key field for example).
        """
        joins = [alias]
        # The transform can't be applied yet, as joins must be trimmed later.
        # To avoid making every caller of this method look up transforms
        # directly, compute transforms here and create a partial that converts
        # fields to the appropriate wrapped version.

        def final_transformer(field, alias):
            return field.get_col(alias)

        # Try resolving all the names as fields first. If there's an error,
        # treat trailing names as lookups until a field can be resolved.
        last_field_exception = None
        for pivot in range(len(names), 0, -1):
            try:
                path, final_field, targets, rest = self.names_to_path(
                    names[:pivot], opts, allow_many, fail_on_missing=True,
                )
            except FieldError as exc:
                if pivot == 1:
                    # The first item cannot be a lookup, so it's safe
                    # to raise the field error here.
                    raise
                else:
                    last_field_exception = exc
            else:
                # The transforms are the remaining items that couldn't be
                # resolved into fields.
                transforms = names[pivot:]
                break
        for name in transforms:
            def transform(field, alias, *, name, previous):
                try:
                    wrapped = previous(field, alias)
                    return self.try_transform(wrapped, name)
                except FieldError:
                    # FieldError is raised if the transform doesn't exist.
                    if isinstance(final_field, Field) and last_field_exception:
                        raise last_field_exception
                    else:
                        raise
            final_transformer = functools.partial(transform, name=name, previous=final_transformer)
        # Then, add the path to the query's joins. Note that we can't trim
        # joins at this stage - we will need the information about join type
        # of the trimmed joins.
        for join in path:
            if join.filtered_relation:
                filtered_relation = join.filtered_relation.clone()
                table_alias = filtered_relation.alias
            else:
                filtered_relation = None
                table_alias = None
            opts = join.to_opts
            if join.direct:
                nullable = self.is_nullable(join.join_field)
            else:
                nullable = True
            connection = Join(
                opts.db_table, alias, table_alias, INNER, join.join_field,
                nullable, filtered_relation=filtered_relation,
            )
            reuse = can_reuse if join.m2m or reuse_with_filtered_relation else None
            alias = self.join(
                connection, reuse=reuse,
                reuse_with_filtered_relation=reuse_with_filtered_relation,
            )
            joins.append(alias)
            if filtered_relation:
                filtered_relation.path = joins[:]
        return JoinInfo(final_field, targets, opts, joins, path, final_transformer)

    def trim_joins(self, targets, joins, path):
        """
        The 'target' parameter is the final field being joined to, 'joins'
        is the full list of join aliases. The 'path' contain the PathInfos
        used to create the joins.

        Return the final target field and table alias and the new active
        joins.

        Always trim any direct join if the target column is already in the
        previous table. Can't trim reverse joins as it's unknown if there's
        anything on the other side of the join.
        """
        joins = joins[:]
        for pos, info in enumerate(reversed(path)):
            if len(joins) == 1 or not info.direct:
                break
            if info.filtered_relation:
                break
            join_targets = {t.column for t in info.join_field.foreign_related_fields}
            cur_targets = {t.column for t in targets}
            if not cur_targets.issubset(join_targets):
                break
            targets_dict = {r[1].column: r[0] for r in info.join_field.related_fields if r[1].column in cur_targets}
            targets = tuple(targets_dict[t.column] for t in targets)
            self.unref_alias(joins.pop())
        return targets, joins[-1], joins

    @classmethod
    def _gen_cols(cls, exprs):
        for expr in exprs:
            if isinstance(expr, Col):
                yield expr
            else:
                yield from cls._gen_cols(expr.get_source_expressions())

    @classmethod
    def _gen_col_aliases(cls, exprs):
        yield from (expr.alias for expr in cls._gen_cols(exprs))

    def resolve_ref(self, name, allow_joins=True, reuse=None, summarize=False):
        if not allow_joins and LOOKUP_SEP in name:
            raise FieldError("Joined field references are not permitted in this query")
        annotation = self.annotations.get(name)
        if annotation is not None:
            if not allow_joins:
                for alias in self._gen_col_aliases([annotation]):
                    if isinstance(self.alias_map[alias], Join):
                        raise FieldError(
                            'Joined field references are not permitted in '
                            'this query'
                        )
            if summarize:
                # Summarize currently means we are doing an aggregate() query
                # which is executed as a wrapped subquery if any of the
                # aggregate() elements reference an existing annotation. In
                # that case we need to return a Ref to the subquery's annotation.
                if name not in self.annotation_select:
                    raise FieldError(
                        "Cannot aggregate over the '%s' alias. Use annotate() "
                        "to promote it." % name
                    )
                return Ref(name, self.annotation_select[name])
            else:
                return annotation
        else:
            field_list = name.split(LOOKUP_SEP)
            join_info = self.setup_joins(field_list, self.get_meta(), self.get_initial_alias(), can_reuse=reuse)
            targets, final_alias, join_list = self.trim_joins(join_info.targets, join_info.joins, join_info.path)
            if not allow_joins and len(join_list) > 1:
                raise FieldError('Joined field references are not permitted in this query')
            if len(targets) > 1:
                raise FieldError("Referencing multicolumn fields with F() objects "
                                 "isn't supported")
            # Verify that the last lookup in name is a field or a transform:
            # transform_function() raises FieldError if not.
            join_info.transform_function(targets[0], final_alias)
            if reuse is not None:
                reuse.update(join_list)
            return self._get_col(targets[0], join_info.targets[0], join_list[-1])

    def split_exclude(self, filter_expr, can_reuse, names_with_path):
        """
        When doing an exclude against any kind of N-to-many relation, we need
        to use a subquery. This method constructs the nested query, given the
        original exclude filter (filter_expr) and the portion up to the first
        N-to-many relation field.

        For example, if the origin filter is ~Q(child__name='foo'), filter_expr
        is ('child__name', 'foo') and can_reuse is a set of joins usable for
        filters in the original query.

        We will turn this into equivalent of:
            WHERE NOT EXISTS(
                SELECT 1
                FROM child
                WHERE name = 'foo' AND child.parent_id = parent.id
                LIMIT 1
            )
        """
        filter_lhs, filter_rhs = filter_expr
        if isinstance(filter_rhs, OuterRef):
            filter_expr = (filter_lhs, OuterRef(filter_rhs))
        elif isinstance(filter_rhs, F):
            filter_expr = (filter_lhs, OuterRef(filter_rhs.name))
        # Generate the inner query.
        query = Query(self.model)
        query._filtered_relations = self._filtered_relations
        query.add_filter(filter_expr)
        query.clear_ordering(True)
        # Try to have as simple as possible subquery -> trim leading joins from
        # the subquery.
        trimmed_prefix, contains_louter = query.trim_start(names_with_path)

        col = query.select[0]
        select_field = col.target
        alias = col.alias
        if alias in can_reuse:
            pk = select_field.model._meta.pk
            # Need to add a restriction so that outer query's filters are in effect for
            # the subquery, too.
            query.bump_prefix(self)
            lookup_class = select_field.get_lookup('exact')
            # Note that the query.select[0].alias is different from alias
            # due to bump_prefix above.
            lookup = lookup_class(pk.get_col(query.select[0].alias),
                                  pk.get_col(alias))
            query.where.add(lookup, AND)
            query.external_aliases[alias] = True

        lookup_class = select_field.get_lookup('exact')
        lookup = lookup_class(col, ResolvedOuterRef(trimmed_prefix))
        query.where.add(lookup, AND)
        condition, needed_inner = self.build_filter(Exists(query))

        if contains_louter:
            or_null_condition, _ = self.build_filter(
                ('%s__isnull' % trimmed_prefix, True),
                current_negated=True, branch_negated=True, can_reuse=can_reuse)
            condition.add(or_null_condition, OR)
            # Note that the end result will be:
            # (outercol NOT IN innerq AND outercol IS NOT NULL) OR outercol IS NULL.
            # This might look crazy but due to how IN works, this seems to be
            # correct. If the IS NOT NULL check is removed then outercol NOT
            # IN will return UNKNOWN. If the IS NULL check is removed, then if
            # outercol IS NULL we will not match the row.
        return condition, needed_inner

    def set_empty(self):
        self.where.add(NothingNode(), AND)
        for query in self.combined_queries:
            query.set_empty()

    def is_empty(self):
        return any(isinstance(c, NothingNode) for c in self.where.children)

    def set_limits(self, low=None, high=None):
        """
        Adjust the limits on the rows retrieved. Use low/high to set these,
        as it makes it more Pythonic to read and write. When the SQL query is
        created, convert them to the appropriate offset and limit values.

        Apply any limits passed in here to the existing constraints. Add low
        to the current low value and clamp both to any existing high value.
        """
        if high is not None:
            if self.high_mark is not None:
                self.high_mark = min(self.high_mark, self.low_mark + high)
            else:
                self.high_mark = self.low_mark + high
        if low is not None:
            if self.high_mark is not None:
                self.low_mark = min(self.high_mark, self.low_mark + low)
            else:
                self.low_mark = self.low_mark + low

        if self.low_mark == self.high_mark:
            self.set_empty()

    def clear_limits(self):
        """Clear any existing limits."""
        self.low_mark, self.high_mark = 0, None

    @property
    def is_sliced(self):
        return self.low_mark != 0 or self.high_mark is not None

    def has_limit_one(self):
        return self.high_mark is not None and (self.high_mark - self.low_mark) == 1

    def can_filter(self):
        """
        Return True if adding filters to this instance is still possible.

        Typically, this means no limits or offsets have been put on the results.
        """
        return not self.is_sliced

    def clear_select_clause(self):
        """Remove all fields from SELECT clause."""
        self.select = ()
        self.default_cols = False
        self.select_related = False
        self.set_extra_mask(())
        self.set_annotation_mask(())

    def clear_select_fields(self):
        """
        Clear the list of fields to select (but not extra_select columns).
        Some queryset types completely replace any existing list of select
        columns.
        """
        self.select = ()
        self.values_select = ()

    def add_select_col(self, col, name):
        self.select += col,
        self.values_select += name,

    def set_select(self, cols):
        self.default_cols = False
        self.select = tuple(cols)

    def add_distinct_fields(self, *field_names):
        """
        Add and resolve the given fields to the query's "distinct on" clause.
        """
        self.distinct_fields = field_names
        self.distinct = True

    def add_fields(self, field_names, allow_m2m=True):
        """
        Add the given (model) fields to the select set. Add the field names in
        the order specified.
        """
        alias = self.get_initial_alias()
        opts = self.get_meta()

        try:
            cols = []
            for name in field_names:
                # Join promotion note - we must not remove any rows here, so
                # if there is no existing joins, use outer join.
                join_info = self.setup_joins(name.split(LOOKUP_SEP), opts, alias, allow_many=allow_m2m)
                targets, final_alias, joins = self.trim_joins(
                    join_info.targets,
                    join_info.joins,
                    join_info.path,
                )
                for target in targets:
                    cols.append(join_info.transform_function(target, final_alias))
            if cols:
                self.set_select(cols)
        except MultiJoin:
            raise FieldError("Invalid field name: '%s'" % name)
        except FieldError:
            if LOOKUP_SEP in name:
                # For lookups spanning over relationships, show the error
                # from the model on which the lookup failed.
                raise
            elif name in self.annotations:
                raise FieldError(
                    "Cannot select the '%s' alias. Use annotate() to promote "
                    "it." % name
                )
            else:
                names = sorted([
                    *get_field_names_from_opts(opts), *self.extra,
                    *self.annotation_select, *self._filtered_relations
                ])
                raise FieldError("Cannot resolve keyword %r into field. "
                                 "Choices are: %s" % (name, ", ".join(names)))

    def add_ordering(self, *ordering):
        """
        Add items from the 'ordering' sequence to the query's "order by"
        clause. These items are either field names (not column names) --
        possibly with a direction prefix ('-' or '?') -- or OrderBy
        expressions.

        If 'ordering' is empty, clear all ordering from the query.
        """
        errors = []
        for item in ordering:
            if isinstance(item, str):
                if '.' in item:
                    warnings.warn(
                        'Passing column raw column aliases to order_by() is '
                        'deprecated. Wrap %r in a RawSQL expression before '
                        'passing it to order_by().' % item,
                        category=RemovedInDjango40Warning,
                        stacklevel=3,
                    )
                    continue
                if item == '?':
                    continue
                if item.startswith('-'):
                    item = item[1:]
                if item in self.annotations:
                    continue
                if self.extra and item in self.extra:
                    continue
                # names_to_path() validates the lookup. A descriptive
                # FieldError will be raise if it's not.
                self.names_to_path(item.split(LOOKUP_SEP), self.model._meta)
            elif not hasattr(item, 'resolve_expression'):
                errors.append(item)
            if getattr(item, 'contains_aggregate', False):
                raise FieldError(
                    'Using an aggregate in order_by() without also including '
                    'it in annotate() is not allowed: %s' % item
                )
        if errors:
            raise FieldError('Invalid order_by arguments: %s' % errors)
        if ordering:
            self.order_by += ordering
        else:
            self.default_ordering = False

    def clear_ordering(self, force_empty):
        """
        Remove any ordering settings. If 'force_empty' is True, there will be
        no ordering in the resulting query (not even the model's default).
        """
        self.order_by = ()
        self.extra_order_by = ()
        if force_empty:
            self.default_ordering = False

    def set_group_by(self, allow_aliases=True):
        """
        Expand the GROUP BY clause required by the query.

        This will usually be the set of all non-aggregate fields in the
        return data. If the database backend supports grouping by the
        primary key, and the query would be equivalent, the optimization
        will be made automatically.
        """
        # Column names from JOINs to check collisions with aliases.
        if allow_aliases:
            column_names = set()
            seen_models = set()
            for join in list(self.alias_map.values())[1:]:  # Skip base table.
                model = join.join_field.related_model
                if model not in seen_models:
                    column_names.update({
                        field.column
                        for field in model._meta.local_concrete_fields
                    })
                    seen_models.add(model)

        group_by = list(self.select)
        if self.annotation_select:
            for alias, annotation in self.annotation_select.items():
                signature = inspect.signature(annotation.get_group_by_cols)
                if 'alias' not in signature.parameters:
                    annotation_class = annotation.__class__
                    msg = (
                        '`alias=None` must be added to the signature of '
                        '%s.%s.get_group_by_cols().'
                    ) % (annotation_class.__module__, annotation_class.__qualname__)
                    warnings.warn(msg, category=RemovedInDjango40Warning)
                    group_by_cols = annotation.get_group_by_cols()
                else:
                    if not allow_aliases or alias in column_names:
                        alias = None
                    group_by_cols = annotation.get_group_by_cols(alias=alias)
                group_by.extend(group_by_cols)
        self.group_by = tuple(group_by)

    def add_select_related(self, fields):
        """
        Set up the select_related data structure so that we only select
        certain related models (as opposed to all models, when
        self.select_related=True).
        """
        if isinstance(self.select_related, bool):
            field_dict = {}
        else:
            field_dict = self.select_related
        for field in fields:
            d = field_dict
            for part in field.split(LOOKUP_SEP):
                d = d.setdefault(part, {})
        self.select_related = field_dict

    def add_extra(self, select, select_params, where, params, tables, order_by):
        """
        Add data to the various extra_* attributes for user-created additions
        to the query.
        """
        if select:
            # We need to pair any placeholder markers in the 'select'
            # dictionary with their parameters in 'select_params' so that
            # subsequent updates to the select dictionary also adjust the
            # parameters appropriately.
            select_pairs = {}
            if select_params:
                param_iter = iter(select_params)
            else:
                param_iter = iter([])
            for name, entry in select.items():
                entry = str(entry)
                entry_params = []
                pos = entry.find("%s")
                while pos != -1:
                    if pos == 0 or entry[pos - 1] != '%':
                        entry_params.append(next(param_iter))
                    pos = entry.find("%s", pos + 2)
                select_pairs[name] = (entry, entry_params)
            self.extra.update(select_pairs)
        if where or params:
            self.where.add(ExtraWhere(where, params), AND)
        if tables:
            self.extra_tables += tuple(tables)
        if order_by:
            self.extra_order_by = order_by

    def clear_deferred_loading(self):
        """Remove any fields from the deferred loading set."""
        self.deferred_loading = (frozenset(), True)

    def add_deferred_loading(self, field_names):
        """
        Add the given list of model field names to the set of fields to
        exclude from loading from the database when automatic column selection
        is done. Add the new field names to any existing field names that
        are deferred (or removed from any existing field names that are marked
        as the only ones for immediate loading).
        """
        # Fields on related models are stored in the literal double-underscore
        # format, so that we can use a set datastructure. We do the foo__bar
        # splitting and handling when computing the SQL column names (as part of
        # get_columns()).
        existing, defer = self.deferred_loading
        if defer:
            # Add to existing deferred names.
            self.deferred_loading = existing.union(field_names), True
        else:
            # Remove names from the set of any existing "immediate load" names.
            self.deferred_loading = existing.difference(field_names), False

    def add_immediate_loading(self, field_names):
        """
        Add the given list of model field names to the set of fields to
        retrieve when the SQL is executed ("immediate loading" fields). The
        field names replace any existing immediate loading field names. If
        there are field names already specified for deferred loading, remove
        those names from the new field_names before storing the new names
        for immediate loading. (That is, immediate loading overrides any
        existing immediate values, but respects existing deferrals.)
        """
        existing, defer = self.deferred_loading
        field_names = set(field_names)
        if 'pk' in field_names:
            field_names.remove('pk')
            field_names.add(self.get_meta().pk.name)

        if defer:
            # Remove any existing deferred names from the current set before
            # setting the new names.
            self.deferred_loading = field_names.difference(existing), False
        else:
            # Replace any existing "immediate load" field names.
            self.deferred_loading = frozenset(field_names), False

    def get_loaded_field_names(self):
        """
        If any fields are marked to be deferred, return a dictionary mapping
        models to a set of names in those fields that will be loaded. If a
        model is not in the returned dictionary, none of its fields are
        deferred.

        If no fields are marked for deferral, return an empty dictionary.
        """
        # We cache this because we call this function multiple times
        # (compiler.fill_related_selections, query.iterator)
        try:
            return self._loaded_field_names_cache
        except AttributeError:
            collection = {}
            self.deferred_to_data(collection, self.get_loaded_field_names_cb)
            self._loaded_field_names_cache = collection
            return collection

    def get_loaded_field_names_cb(self, target, model, fields):
        """Callback used by get_deferred_field_names()."""
        target[model] = {f.attname for f in fields}

    def set_annotation_mask(self, names):
        """Set the mask of annotations that will be returned by the SELECT."""
        if names is None:
            self.annotation_select_mask = None
        else:
            self.annotation_select_mask = set(names)
        self._annotation_select_cache = None

    def append_annotation_mask(self, names):
        if self.annotation_select_mask is not None:
            self.set_annotation_mask(self.annotation_select_mask.union(names))

    def set_extra_mask(self, names):
        """
        Set the mask of extra select items that will be returned by SELECT.
        Don't remove them from the Query since they might be used later.
        """
        if names is None:
            self.extra_select_mask = None
        else:
            self.extra_select_mask = set(names)
        self._extra_select_cache = None

    def set_values(self, fields):
        self.select_related = False
        self.clear_deferred_loading()
        self.clear_select_fields()

        if fields:
            field_names = []
            extra_names = []
            annotation_names = []
            if not self.extra and not self.annotations:
                # Shortcut - if there are no extra or annotations, then
                # the values() clause must be just field names.
                field_names = list(fields)
            else:
                self.default_cols = False
                for f in fields:
                    if f in self.extra_select:
                        extra_names.append(f)
                    elif f in self.annotation_select:
                        annotation_names.append(f)
                    else:
                        field_names.append(f)
            self.set_extra_mask(extra_names)
            self.set_annotation_mask(annotation_names)
            selected = frozenset(field_names + extra_names + annotation_names)
        else:
            field_names = [f.attname for f in self.model._meta.concrete_fields]
            selected = frozenset(field_names)
        # Selected annotations must be known before setting the GROUP BY
        # clause.
        if self.group_by is True:
            self.add_fields((f.attname for f in self.model._meta.concrete_fields), False)
            # Disable GROUP BY aliases to avoid orphaning references to the
            # SELECT clause which is about to be cleared.
            self.set_group_by(allow_aliases=False)
            self.clear_select_fields()
        elif self.group_by:
            # Resolve GROUP BY annotation references if they are not part of
            # the selected fields anymore.
            group_by = []
            for expr in self.group_by:
                if isinstance(expr, Ref) and expr.refs not in selected:
                    expr = self.annotations[expr.refs]
                group_by.append(expr)
            self.group_by = tuple(group_by)

        self.values_select = tuple(field_names)
        self.add_fields(field_names, True)

    @property
    def annotation_select(self):
        """
        Return the dictionary of aggregate columns that are not masked and
        should be used in the SELECT clause. Cache this result for performance.
        """
        if self._annotation_select_cache is not None:
            return self._annotation_select_cache
        elif not self.annotations:
            return {}
        elif self.annotation_select_mask is not None:
            self._annotation_select_cache = {
                k: v for k, v in self.annotations.items()
                if k in self.annotation_select_mask
            }
            return self._annotation_select_cache
        else:
            return self.annotations

    @property
    def extra_select(self):
        if self._extra_select_cache is not None:
            return self._extra_select_cache
        if not self.extra:
            return {}
        elif self.extra_select_mask is not None:
            self._extra_select_cache = {
                k: v for k, v in self.extra.items()
                if k in self.extra_select_mask
            }
            return self._extra_select_cache
        else:
            return self.extra

    def trim_start(self, names_with_path):
        """
        Trim joins from the start of the join path. The candidates for trim
        are the PathInfos in names_with_path structure that are m2m joins.

        Also set the select column so the start matches the join.

        This method is meant to be used for generating the subquery joins &
        cols in split_exclude().

        Return a lookup usable for doing outerq.filter(lookup=self) and a
        boolean indicating if the joins in the prefix contain a LEFT OUTER join.
        _"""
        all_paths = []
        for _, paths in names_with_path:
            all_paths.extend(paths)
        contains_louter = False
        # Trim and operate only on tables that were generated for
        # the lookup part of the query. That is, avoid trimming
        # joins generated for F() expressions.
        lookup_tables = [
            t for t in self.alias_map
            if t in self._lookup_joins or t == self.base_table
        ]
        for trimmed_paths, path in enumerate(all_paths):
            if path.m2m:
                break
            if self.alias_map[lookup_tables[trimmed_paths + 1]].join_type == LOUTER:
                contains_louter = True
            alias = lookup_tables[trimmed_paths]
            self.unref_alias(alias)
        # The path.join_field is a Rel, lets get the other side's field
        join_field = path.join_field.field
        # Build the filter prefix.
        paths_in_prefix = trimmed_paths
        trimmed_prefix = []
        for name, path in names_with_path:
            if paths_in_prefix - len(path) < 0:
                break
            trimmed_prefix.append(name)
            paths_in_prefix -= len(path)
        trimmed_prefix.append(
            join_field.foreign_related_fields[0].name)
        trimmed_prefix = LOOKUP_SEP.join(trimmed_prefix)
        # Lets still see if we can trim the first join from the inner query
        # (that is, self). We can't do this for:
        # - LEFT JOINs because we would miss those rows that have nothing on
        #   the outer side,
        # - INNER JOINs from filtered relations because we would miss their
        #   filters.
        first_join = self.alias_map[lookup_tables[trimmed_paths + 1]]
        if first_join.join_type != LOUTER and not first_join.filtered_relation:
            select_fields = [r[0] for r in join_field.related_fields]
            select_alias = lookup_tables[trimmed_paths + 1]
            self.unref_alias(lookup_tables[trimmed_paths])
            extra_restriction = join_field.get_extra_restriction(
                self.where_class, None, lookup_tables[trimmed_paths + 1])
            if extra_restriction:
                self.where.add(extra_restriction, AND)
        else:
            # TODO: It might be possible to trim more joins from the start of the
            # inner query if it happens to have a longer join chain containing the
            # values in select_fields. Lets punt this one for now.
            select_fields = [r[1] for r in join_field.related_fields]
            select_alias = lookup_tables[trimmed_paths]
        # The found starting point is likely a Join instead of a BaseTable reference.
        # But the first entry in the query's FROM clause must not be a JOIN.
        for table in self.alias_map:
            if self.alias_refcount[table] > 0:
                self.alias_map[table] = BaseTable(self.alias_map[table].table_name, table)
                break
        self.set_select([f.get_col(select_alias) for f in select_fields])
        return trimmed_prefix, contains_louter

    def is_nullable(self, field):
        """
        Check if the given field should be treated as nullable.

        Some backends treat '' as null and Django treats such fields as
        nullable for those backends. In such situations field.null can be
        False even if we should treat the field as nullable.
        """
        # We need to use DEFAULT_DB_ALIAS here, as QuerySet does not have
        # (nor should it have) knowledge of which connection is going to be
        # used. The proper fix would be to defer all decisions where
        # is_nullable() is needed to the compiler stage, but that is not easy
        # to do currently.
        return (
            connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls and
            field.empty_strings_allowed
        ) or field.null


def get_order_dir(field, default='ASC'):
    """
    Return the field name and direction for an order specification. For
    example, '-foo' is returned as ('foo', 'DESC').

    The 'default' param is used to indicate which way no prefix (or a '+'
    prefix) should sort. The '-' prefix always sorts the opposite way.
    """
    dirn = ORDER_DIR[default]
    if field[0] == '-':
        return field[1:], dirn[1]
    return field, dirn[0]


def add_to_dict(data, key, value):
    """
    Add "value" to the set of values for "key", whether or not "key" already
    exists.
    """
    if key in data:
        data[key].add(value)
    else:
        data[key] = {value}


def is_reverse_o2o(field):
    """
    Check if the given field is reverse-o2o. The field is expected to be some
    sort of relation field or related object.
    """
    return field.is_relation and field.one_to_one and not field.concrete


class JoinPromoter:
    """
    A class to abstract away join promotion problems for complex filter
    conditions.
    """

    def __init__(self, connector, num_children, negated):
        self.connector = connector
        self.negated = negated
        if self.negated:
            if connector == AND:
                self.effective_connector = OR
            else:
                self.effective_connector = AND
        else:
            self.effective_connector = self.connector
        self.num_children = num_children
        # Maps of table alias to how many times it is seen as required for
        # inner and/or outer joins.
        self.votes = Counter()

    def add_votes(self, votes):
        """
        Add single vote per item to self.votes. Parameter can be any
        iterable.
        """
        self.votes.update(votes)

    def update_join_types(self, query):
        """
        Change join types so that the generated query is as efficient as
        possible, but still correct. So, change as many joins as possible
        to INNER, but don't make OUTER joins INNER if that could remove
        results from the query.
        """
        to_promote = set()
        to_demote = set()
        # The effective_connector is used so that NOT (a AND b) is treated
        # similarly to (a OR b) for join promotion.
        for table, votes in self.votes.items():
            # We must use outer joins in OR case when the join isn't contained
            # in all of the joins. Otherwise the INNER JOIN itself could remove
            # valid results. Consider the case where a model with rel_a and
            # rel_b relations is queried with rel_a__col=1 | rel_b__col=2. Now,
            # if rel_a join doesn't produce any results is null (for example
            # reverse foreign key or null value in direct foreign key), and
            # there is a matching row in rel_b with col=2, then an INNER join
            # to rel_a would remove a valid match from the query. So, we need
            # to promote any existing INNER to LOUTER (it is possible this
            # promotion in turn will be demoted later on).
            if self.effective_connector == 'OR' and votes < self.num_children:
                to_promote.add(table)
            # If connector is AND and there is a filter that can match only
            # when there is a joinable row, then use INNER. For example, in
            # rel_a__col=1 & rel_b__col=2, if either of the rels produce NULL
            # as join output, then the col=1 or col=2 can't match (as
            # NULL=anything is always false).
            # For the OR case, if all children voted for a join to be inner,
            # then we can use INNER for the join. For example:
            #     (rel_a__col__icontains=Alex | rel_a__col__icontains=Russell)
            # then if rel_a doesn't produce any rows, the whole condition
            # can't match. Hence we can safely use INNER join.
            if self.effective_connector == 'AND' or (
                    self.effective_connector == 'OR' and votes == self.num_children):
                to_demote.add(table)
            # Finally, what happens in cases where we have:
            #    (rel_a__col=1|rel_b__col=2) & rel_a__col__gte=0
            # Now, we first generate the OR clause, and promote joins for it
            # in the first if branch above. Both rel_a and rel_b are promoted
            # to LOUTER joins. After that we do the AND case. The OR case
            # voted no inner joins but the rel_a__col__gte=0 votes inner join
            # for rel_a. We demote it back to INNER join (in AND case a single
            # vote is enough). The demotion is OK, if rel_a doesn't produce
            # rows, then the rel_a__col__gte=0 clause can't be true, and thus
            # the whole clause must be false. So, it is safe to use INNER
            # join.
            # Note that in this example we could just as well have the __gte
            # clause and the OR clause swapped. Or we could replace the __gte
            # clause with an OR clause containing rel_a__col=1|rel_a__col=2,
            # and again we could safely demote to INNER.
        query.promote_joins(to_promote)
        query.demote_joins(to_demote)
        return to_demote